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11. Multicausality:  Confounding 

Accounting for the multicausal nature of disease –  
secondary associations and their control 

Introduction 

When “modern epidemiology” developed in the 1970s, Olli Miettinen organized sources of bias into 
three major categories: selection bias, information bias, and confounding bias.  If our focus is the 
crude association between two factors, selection bias can lead us to observe an association that 
differs from that which exists in the population we believe we are studying (the target population).  
Similarly, information bias can cause the observed association to differ from what it actually is.  
Confounding differs from these other types of bias, however, because confounding does not alter 
the crude association.  Instead, concern for confounding comes into play for the interpretation of  
the observed association. 

We have already considered confounding, without referring to it by that term, in the chapter on age 
standardization.  The comparison of crude mortality rates can be misleading, not because the rates 
are biased, but because they are greatly affected by the age distributions in the groups being 
compared.  Thus, in order to be able to interpret the comparison of mortality rates we needed to 
examine age-specific and age-standardized rates in order avoid or equalize the influence of age.  Had 
we attemped to interpret the crude rates, our interpretation would have been confounded by age 
differences in the populations being compared.  We therefore controlled for the effects of age in 
order to remove the confounding.  In this chapter we will delve into the mechanics of confounding 
and review the repertoire of strategies to avoid or control it. 

Counterfactual reasoning 

Epidemiologic research, whether descriptive or analytic, etiologic or evaluative, generally seeks to 
make causal interpretations.  An association between two factors prompts the question what is 
responsible for it (or in the opposite case, what is responsible for our not seeing an association we 
expect).   Causal reasoning about associations, even those not the focus of investigation, is part of 
the process of making sense out of data.  So the ability to infer causal relationships from observed 
associations is a fundamental one. 

In an “epidemiologists’ ideal world”, we could infer causality by comparing a health outcome for a 
person exposed to a factor of interest to what the outcome would have been in the absence of 
exposure.  A comparison of what would occur with exposure to what would occur in the absence of 
exposure is called counterfactual, because one side of the comparison is contrary to fact (see 
Rothman and Greenland, p49, who attribute this concept to Hume’s work in the 18th century).  
This counterfactual comparison provides a sound logical basis for inferring causality, because the 
effect of the exposure can be isolated from the influence of other factors. 
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In the factual world, however, we can never observe the identical situation twice, except perhaps for 
“instant replay”, which does not allow us to alter exposure status.  The plethora of factors that can 
influence an outcome vary from person to person, place to place, and time to time.  Variation in 
these factors is responsible for the variability in the outcomes we observe, and so a key objective in 
both experimental and observational research is to minimize all sources of variability other than the 
one whose effects are being observed.  Only when all other sources of variability are adequately 
controlled can differences between outcomes with and without the exposure be definitively 
attributed to the exposure. 

Experimental sciences 

Experimental sciences minimize unwanted variability by controlling relevant factors through 
experimental design.  The opportunities for control that come from laboratory experimentation are 
one of the reasons for their power and success in obtaining repeatable findings.  For example, 
laboratory experiments can use tissue cultures or laboratory animals of the same genetic strain and 
maintain identical temperature, lighting, handling, accommodation, food, and so forth.  Since not all 
sources of variability can be controlled, experiments also employ control groups or conditions that 
reflect the influence of factors that the experimenter cannot control.  Comparison of the 
experimental and control conditions enables the experimenter to control analytically the effects of 
these unwanted influences. 

Because they can manipulate the object of study, experiments can achieve a high level of assurance 
of the equivalence of the experimental and control conditions in regard to all influences other than 
the exposure of interest.  The experimenter can make a before-after comparison by measuring the 
outcome before and after applying an “exposure”.  Where it is important to control for changes that 
occur with time (aging), a concurrent control group can be employed.  With randomized assignment 
of the exposure, the probability of any difference between experimental and control groups can be 
estimated and made as small as desired by randomizing a large number of participants.  If the 
exposure does not have lingering effects, a cross-over design can be used in which the exposure is 
applied to a random half of the participants and later to the other half.  The before-after comparison 
controls for differences between groups, and the comparison across groups controls for changes 
that occur over time.  If measurements can be carried out without knowledge of exposure status, 
then observer effects can be reduced as well.  With sufficient control, a close approximation to the 
ideal, counterfactual comparison can be achieved.  

Comparison groups 

In epidemiology, before-after and cross-over studies are uncommon, partly because the exposure 
often cannot be manipulated by the investigator; partly because of the long time scale of the 
processes under study; and partly because either the exposure, the process of observation, or both 
often have lasting effects.  The more usual approximation to a counterfactual comparison uses a 
comparison group, often called a “control group” on analogy with the experimental model.  The 
comparison group serves as a surrogate for the counterfactual “exposed group without the 
exposure”.  Thus, the adequacy of a comparison group depends upon its ability to yield an accurate 
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estimate of what the outcomes would have been in the exposed group in the absence of the 
exposure.   

Randomized trials 

The epidemiologic study design that comes closest to the experimental model is the large 
randomized, controlled trial.  However, the degree of control attainable with humans is considerably 
less than with cell cultures.  For example, consider the Physicians Health Study, in which Dr. Charles 
Hennekins and colleagues at Harvard University enrolled U.S. physicians (including several faculty in 
my Department) into a trial to test whether aspirin and/or beta carotene reduce risk of acute 
myocardial infarction and/or cancer.  The study employed a factorial design in which the physicians 
were asked to take different pills on alternate days.  One group of physicians alternated between 
aspirin and beta carotene; another group alternated between aspirin and a placebo designed to look 
like a beta carotene capsule; the third group alternated between an aspirin look-alike and beta 
carotene; and the fourth group alternated between the two placebos.  In this way the researchers 
could examine the effects of each substance both by itself and with the other – two separate 
experiments conducted simultaneously. 

With 20,000 participants, this study design ensured that the four groups were virtually identical in 
terms of baseline characteristics.  But there was clearly less control over physicians during the 
follow-up period than would have been possible with, say, laboratory rats.  For example, the 
physician-participants may have increased their exercise levels, changed their diets, taken up 
meditation, or made other changes that might affect their disease risk.  Such changes can render a 
study uninformative. 

The MRFIT debacle 

Just such an unfortunate situation apparently developed in the Multiple Risk Factor Intervention 
Trial (MRFIT), a large-scale (12,000 participants, over $100 million) study sponsored by the National 
Heart, Lung, and Blood Institute (NHLBI) of the U.S. National Institutes of Health (NIH).  As 
evidence mounted that blood cholesterol was an etiologic risk factor for multiple forms of 
cardiovascular disease, particularly coronary heart disease (CHD), the possibility for a trial to verify 
that changing cholesterol levels would reduce CVD was being intensively explored.  However, in the 
late 1960’s suitable drugs were not available; the only cholesterol-lowering intervention was dietary 
modification.  A “diet-heart” trial would require over one million participants and last many years – 
not an appealing scenario. 

The idea of a diet-heart trial persisted, however, eventually metamorphosizing into a study to verify 
that cardiovascular disease rates could be lowered by changing the three most common CVD risk 
factors:  cigarette smoking, elevated serum cholesterol, and hypertension.  Thus was born MRFIT. 

The trial was launched in the early 1970’s.  Men (because they have higher CHD rates) whose risk 
factors placed them at high CHD risk (based on a model from the Framingham Study) were 
randomized to “Special Intervention” (SI) or Usual Care (UC).  SI participants received intensive, 
state-of-the-art, theoretically-based interventions to improve diet and promote smoking cessation.  
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Hypertensive SI participants were treated with a systematic protocol to control their blood pressure.  
UC participants had copies of their regular examinations sent to their personal physicians, but 
received no treatment through MRFIT.  In this pre-“wellness” (health promotion / disease 
prevention through individual behavior change) era, the trial’s designers projected modest risk factor 
changes in SI participants and little if any change in UC participants.  Even though UC participants’ 
physicians were to receive examination results, in those years few practicing physicians became 
involved in dietary change, smoking cessation, or even blood pressure control for healthy patients.   

The planned sample size of about 12,000 men, about 6,000 in SI and 6,000 in UC, was achieved, and 
follow-up was maintained for seven years.  By the end of the follow-up period, risk factor levels in 
the SI group had reached the target levels, and 46% of SI smokers quit smoking.  But to the surprise 
(and consternation) of the MRFIT investigators, cholesterol levels and blood pressures also declined 
among UC participants, and 29% of UC smokers quit.  During the years of the trial, smoking, diet, 
and hypertension had risen on the agendas of both the medical profession and the public 
(presumably aided by another NHLBI initiative, the National High Blood Pressure Control 
Program).  Mortality among the UC participants was not only considerably lower than the projection 
based on data from the Framingham study but was even (slightly) below that for SI participants.  
Needless to say, there were many uncomfortable epidemiologists when the results came out. 

Nonrandomized studies 

Most epidemiologic studies do not have the opportunity to compare groups formed by a random 
assignment procedure.  Whether we study smoking, alcohol, seat belts, handgun ownership, eating, 
exercise, overweight, use of particular medications, exposure to toxic agents, serum cholesterol, 
blood pressure, air pollution, or whatever, there is no assurance that the comparison group (the 
unexposed participants) is just like the exposed participants except for the exposure under study.  
Indeed, the opposite is more likely, since all sorts of factors are related to family and physical 
environment, occupation (e.g., workplace exposures), lifestyles (e.g., nutrition, physical activity), 
social influences (e.g., social support, injustice), health care, health conditions (e.g., medications), 
genetic endowment, and other characteristics.   

Confounding 

Thus, whenever we compare groups with respect to factors of interest, we must always consider that 
group differences in other, “extraneous” factors could be responsible for what we observe (or do 
not observe) (extraneous factors = factors other than the relationships under study).  Confounding 
(from the Latin confundere, to mix together) can be defined as a “situation in which a measure of the 
effect of an exposure on risk is distorted because of the association of exposure with other factor(s) 
that influence the outcome under study” (Last, A dictionary of epidemiology).  Confounding is a problem 
of comparison, a problem that arises when extraneous but important factors are differently 
distributed across groups being compared.  The centrality of the concept of confounding and its 
control in epidemiology derives from the limited opportunities for experimental control. 
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A hypothetical example (with apologies to the Western Collaborative Group 
Study) 

To investigate how confounding can arise and how it can be dealt with, consider the following 
hypothetical data based on the Western Collaborative Group Study of coronary heart disease (CHD) 
risk in managers and white collar workers exhibiting the coronary prone behavior pattern.  This 
pattern, most often referred to as the Type A behavior pattern, is described as hard-driving, time-
urgent, and hyperaggressive.  In contrast, Type B people are regarded as more relaxed and easy-
going. 

In this study, Meyer Friedman, Raymond Rosenman, and their colleagues recruited 3,154 white male 
managers, aged 39-59, employed at ten California companies.  The men were given medical 
examinations for CHD and a standardized, structured interview to determine their behavior type.  
Behavior type was determined by reviewing videotapes of the interviews.  The 2,648 participants 
judged to be free of CHD at baseline were followed-up with annual physical examinations to detect 
new CHD cases during the subsequent 8-1/2 years.  The (actual) results of the study are shown in 
the following diagram and are tabulated in Table 1. 

Figure 1 
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Table 1 
Relationship of CHD to Behavior Pattern 

 Behavior pattern  

 A B Total 

CHD cases 178    79    257     
No manifest CHD 1,129    1,262    2,391     
Total        1,307  1,341  2,648     

Since these data come from a cohort study, we would analyze them by estimating the incidence of 
CHD for the Type A and Type B groups.  Even though the risk period for CHD extends beyond 
the period of observation, we will use cumulative incidence (CI) for simplicity.  In these data, the CI 
is 178/1307 = 0.14 for the Type A group, and 79/1341 = 0.06 for the Type B group.  The relative 
risk (risk ratio, cumulative incidence ratio) is therefore 0.14/0.06 = 2.3 

Questions to ask: 

There are many aspects of the design and conduct of this study that we would want to inquire about.  
For example: 

What were the criteria for classifying participants as Type A or Type B? 

How many participants were lost to follow-up? 

How was CHD defined and diagnosed? 

Were the physicians who determined whether a participant was a new case or not aware of the 
participant’s behavior type? 

But since our topic today is confounding, we are most interested in the question: 

Do the Type A and Type B groups differ in other factors that might have affected their 
observed CHD rates? 

or, equivalently, 

Are there factors other than behavior pattern that may have been responsible for the observed 
rates? 

(It might be interjected here that the same question would be relevant whether a difference between 
Type A and Type B had been observed or not). 
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Hypothetical scenario 

Probably most of you know that in the Western Collaborative Group Study, no other factors 
seemed to explain the difference in CHD incidence between Type A and Type B groups.  So here 
we will depart from the actual study in order to create a scenario in which the difference in the 
observed incidence for Type A and Type B participants is actually due to differences in cigarette 
smoking. 

Suppose we had obtained the data in the Table 1.  How could we see whether the difference in 
incidence between Type A and Type B groups should be attributed to differences in smoking rather 
than to behavior type?  The traditional and most common approach to answering this question is to 
break down or stratify the data by cigarette smoking status of the participants.  Table 2 shows the 
results of such a stratified analysis (with hypothetical data). 

Table 2 
Relationship of CHD to Behavior Pattern, 

Stratified Analysis Controlling for Smoking Status [HYPOTHETICAL DATA] 

 Smokers  Nonsmokers 
 –––––––––––––––––  ––––––––––––––––– 
 Type A Type B  Type A Type B 
 –––––– ––––––  –––––– –––––– 

CHD 168   34    10   45    
____      
CHD 880   177    249   1,085    

 –––––– ––––––  –––––– –––––– 
Total 1,048   211    259   1,130    

This table shows the relationship between behavior type and CHD, stratified by smoking 
experience.  Now we can compute the (cumulative) incidence of CHD among Type A nonsmokers 
and compare that to Type B nonsmokers, which will tell us the effect of behavior type when 
smoking could not possibly account for the results (not counting environmental tobacco smoke).  
We can also look at the incidence for Type A smokers and Type B smokers, where again we have (to 
some extent) created groups that are more comparable. 

What do we see when we do these calculations?  The incidence of CHD among Type A nonsmokers 
is 10/259 = 0.04, exactly the same as that among Type B nonsmokers (45/1130 = 0.04).  We are 
therefore led to the conclusion that at least among nonsmokers, behavior pattern made no 
difference.  Similarly, the cumulative incidence is the same (0.16) for Type A smokers and Type B 
smokers.  Again, behavior pattern made no difference.  Smoking, apparently, made a big difference.  
This key “extraneous” variable was apparently very unevenly distributed between the two behavior 
pattern groups and led to our observing a difference we nearly attributed to behavior pattern. 
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Confounding – a discrepancy between the crude and the controlled 

This example illustrates confounding.  In the uncontrolled or “crude” table, we saw an association 
(CIR of 2.3).  When we controlled for smoking (which we will assume for the present is the only 
relevant extraneous variable), we find that there was no association (CIR of 1.0) between our study 
factor (behavior pattern) and the outcome (CHD).  This discrepancy between the crude CIR (2.3) 
and the stratum specific CIR’s (1.0) indicates that there is confounding by smoking status.  
Stratification is one method of controlling for the confounding effect of smoking.  [Please let me 
emphasize here that the above example is not true to life.  In the actual study by Friedman and 
Rosenman, Type A behavior was found to be associated with CHD even when the effects of 
smoking and other known CHD risk factors were controlled.]  It may also be worthwhile to 
mention that confounding could also happen in the reverse manner, that is, we might see no 
association in the crude analysis but find that there is one when we stratify.  So confounding can 
create an apparent association or mask a real one. 

Confounding arises from unequal distribution of a risk factor 

How can the phenomenon of confounding occur?  As indicated above, the conditions needed to 
create confounding (in this rather simplified situation) are that a true risk factor for the health 
outcome is unevenly distributed between the groups being compared.  To see this in the above 
example, I have rearranged the columns from Table 2.  This rearrangement emphasizes that most of 
the Type A’s were smokers and most of the Type B’s were not. 

Table 3 
Relationship between CHD, Behavior Pattern, and Smoking Status 

 [HYPOTHETICAL DATA] 

 Type A behavior pattern Type B behavior pattern Both 
 ————————————— ————————————— ————
  Non   Non  Grand 
        Smokers smokers Total Smokers smokers Total total 
 ——— ——— ——— ——— ——— ——— ——— 

CHD 168     10     178    34    45    79    257   
____     
CHD 880     249     1,129    177    1,085    1,262    2,391   

 ——— ——— ——— ——— ——— ——— ——— 
Total    1,048     259     1,307    211    1,130    1,341    2,648   

        

Although this table was created by rearranging columns in Table 2, it may be more revealing to think 
of it as providing the underlying story for the uncontrolled (crude) data in Table 1.  Notice that 
Table 1 is contained in this table as the marginals for each of the two subtables (the bolded 
columns).  The subtables show the composition of the Type A group and the Type B group.  
Clearly, the overwhelming majority (1048/1307 = 80%) of the Type A participants are smokers, 
whereas the overwhelming majority (1130/1341 = 84%) of the Type B participants are nonsmokers.  
With such a marked imbalance, it should not be surprising that a risk factor such as smoking could 
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distort the overall (uncontrolled) association.  The attributes of a confounder, then, are that it is an 
independent risk factor for the outcome and is associated with the study factor. 

Confounding – misattribution of an observed association 

The excess of cases in the Type A group is due, clearly, to the greater proportion of smokers in the 
Type A group than in the Type B groups.  Were we to have gone with the crude value, we would 
have misattributed the observed difference between groups to behavior pattern rather than to 
smoking.  Confounding can be defined as a distortion in the measure of association due to the 
unequal distribution of a determinant of the outcome. 

Note, however, that the crude association is still “real”.  The type A participants did have a greater 
incidence of CHD.  Confounding arises when we attribute that elevated incidence to their being type 
A, since the higher incidence is really due to their smoking (in this example).  But the type A men as 
a group did indeed have higher CHD incidence.  There are situations where the crude association 
remains important to consider. 

Another perspective – weighted averages 

A summary table highlights the incidences and makes the pattern very evident. 

Table 4 
Incidence of CHD by Behavior Type and Smoking Status 

[HYPOTHETICAL DATA] 

 Smoking status  

Behavior pattern Smoker Nonsmoker Total  

Type A 0.16 0.04 0.14 ←   (incidences 
Type B 0.16 0.04 0.06 ←   from table 1) 

Total 0.16 0.04   

Here it is very clear that when we hold smoking constant (i.e., look down either of the first two 
columns of incidences), there is no effect of behavior type.  When we hold behavior type constant 
(i.e., look across either of the first two rows), we see that smoking is associated with a fourfold 
increase in incidence.  The marginals of the table are, in effect, weighted averages of the incidences 
in the interior of the table.  The incidences in the bottom row are the same as in the interior of the 
table – they have to be, because a weighted average of two identical numbers is always that number.  
The incidences in the rightmost column, however, could be almost any numbers between 0.16 and 
0.04 – depending upon the weighting used in averaging 0.16 and 0.04.  These concepts can be 
shown graphically. 
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CHD Incidence by Behavior Pattern and Smoking Status 
[HYPOTHETICAL] 
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As the diagram shows, the study population can be viewed as consisting of four distinct subgroups, 
each with a different combination of behavior type and smoking status.  If these were the only 
relevant subgroups, then the incidence rates for each would represent the irreducible “true” state in 
the study population.  The rate for the study population as a whole and for any group in it, e.g., all 
Type A’s, may be regarded as a weighted average of the incidences in the component subgroups, 
where the weights are the proportional sizes of the component subgroups.  Thus the rate in the 
Type A’s is: 

  178  1,048  168  259  10 
0.14 = ––––––––– = ––––––––– × ––––––––– + ––––––––– × –––––––– 
  1,307  1,307  1,048  1,307  259 

or symbolically, 
     _    _

 

CICHD|A = PS|A × CISA + PS|A × CISA 

where: 
CI is (cumulative) incidence 
P is prevalence or proportion 
                                 _         
S indicates smokers (S indicates nonsmoker) 
A indicates behavior Type A 
and the notation S|A means “smokers among (or given) Type A behavior”. 
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Confounding – comparison of weighted averages using different weights 

The incidence for any group (e.g., Type A’s) can vary from the lowest incidence of any of its 
subgroups (e.g., nonsmoker Type A’s) to the highest incidence of any subgroup (e.g., smoker Type 
A’s).  Where in this range the overall group’s incidence falls is determined by the size of each 
subgroup (Type A smokers, Type A nonsmokers) as a proportion of the overall group (all Type A’s).  
Confounding can result when these proportions differ for groups that are being compared. 

Since there are many possible ways in which these proportions can differ, confounding can cause an 
overall (crude) measure of association to overstate, understate, completely obscure, or even invert 
the association that would be seen in comparisons carried out within the subgroups.  As a familiar 
example, if two populations have different age distributions, then a comparison of their overall 
(crude) death rates can overstate or understate the picture seen by comparing within specific age 
groups, even to the point that the comparison of crude rates appears to favor the population that 
has higher (worse) death rates within each age stratum.  Age standardization is a special case of the 
more general strategy called stratified analysis, which is one primary recourse for controlling 
confounding. 

The limits to confounding 

There are limits on the strength of the (secondary) association that can be produced by 
confounding.  For example, given the data in Table 1, a strong effect for smoking and a striking 
imbalance between the two behavior type groups was required in order for smoking to account 
completely for the apparent effect of Type A behavior.  That is one of the reasons why strength of 
association is a criterion for causal inference.  The stronger the observed association between the 
disease and the study factor, the less likely that some completely extraneous factor could account for 
all of the observed association. 

Case-control studies 

So far in our discussion we have confined ourselves to cohort-type studies.  When we turn to the 
issue of confounding in case-control studies, there are some additional complexities as a 
consequence of the way in which the base population is represented in the study population.  To 
understand the characteristics of confounding in a case-control study, let us generate such a study 
from the cohort we considered earlier. 

The original cohort consisted of 2,648 individuals with complete follow-up and yielded 257 cases.  
Ideally, our case-control study would detect all incident cases and would sample from non-cases as 
the cases occurred (called “density sampling”).  To simplify our illustration, however, let us sample 
our controls from those individuals who were free from CHD at the end of the follow-up period.  
The following table shows the same cases, with the distribution of controls expected from obtaining 
a representative sample from the noncases, of size twice the number of cases (i.e., assume 514 
controls with the same proportion of Type A’s and smokers as found in all noncases in the cohort 
study).  (The numbers in the “No CHD” row are obtained by multiplying the “No CHD” row in 
Table 1 (i.e., all the noncases) by 514/2391 (0.21) so that the 2,391 noncases become 514 controls.  
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In this way, the 1,129 Type A’s without manifest CHD become 243 Type A controls, and the 1,262 
Type B’s without manifest CHD become 271 Type B controls.) 

Table 5 
Expected Results from Case-Control Study [HYPOTHETICAL] 

 Behavior pattern   

 Type A Type B Total  

CHD cases 178 79     257  
No manifest CHD 243 271 514 ←  This row is simply 0.21 times 

Total        421 350 771 the corresponding row in Table 1. 

The odds ratio for this table is [2.5], slightly larger than the risk ratio in the cohort study.  [The 
difference between the odds ratio and risk ratio reflects the CHD incidence in the cohort – the 
smaller the incidence, the closer the odds ratio would be to the risk ratio.] 

Now let us generate, in the same manner, the expected table for smoking and behavior pattern in a 
stratified analysis: 

Table 6          
Expected Results for Case-Control Study, Stratified by Smoking Status 

[HYPOTHETICAL]          

 Smokers  Nonsmokers  
 –––––––––––––––––  –––––––––––––––––  
 Type A Type B  Type A Type B  
 ––––––– –––––––  ––––––– –––––––  

CHD 168 34  10 45      
____       
CHD 189 38  54 233 ←  This row is simply 0.21 times 

 ––––––– –––––––  ––––––– ––––––– the corresponding row in Table 2. 
Total 357 72  64 278  

The odds ratios for each table are 1.0, so confounding is again present.  Here again we see that the 
confounding factor is associated with the outcome:  the odds ratio for smoking and CHD in the 
Type B group is 4.6.  We also find that smoking is associated with behavior type:  the proportion of 
smokers among Type A noncases is 0.78 whereas among the Type B noncases it is only 0.14 [verify 
these numbers]. 

The reason for the above emphasis on conditional associations (“in the Type B group”, “among 
noncases”) rather than unconditional or crude associations is that a confounding variable must be 
associated with the exposure under study in the population from which the cases arise (see Rothman 
and Greenland).  It is the control group that provides the estimate of exposure prevalence in the 
source population.  Also, in a case-control study, the totals for different exposure groups (e.g., total 
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Type A smokers) are not very meaningful quantities, at least for comparison purposes.  The reason 
is that the relationships among these totals largely reflect the (arbitrary) ratio of cases to controls.  So 
the association of exposure that is relevant for confounding in a case-control study is the association 
between exposure and the potential confounder among the controls. 

The reason for not looking within the Type A group is that an association in this group could reflect 
effect modification between the exposure (Type A behavior) and the covariable, rather than 
confounding as such.  We will elaborate on this matter when we take up effect modification, in the 
next chapter. 

Confounding – a characteristic of the study base 

We have said that confounding requires two associations:  (1) the confounder must be a risk factor 
for the outcome or its detection and (2) the confounder must be associated with the exposure.  The 
latter association must exist within the study base (see Rothman and Greenland).  This point merits 
elaboration. 

Follow-up study 

In a follow-up study, the study base, from which the cases arise, is simply the population being 
followed, the study population.  For confounding to occur, the exposure and potential confounder 
must be associated in this population.  Randomized assignment of an intervention tends to 
distribute potential confounders evenly across intervention and control groups.  To the extent that 
randomized assignment succeeds, i.e., no extraneous variables will be associated with the 
intervention, so confounding cannot occur.  If, however, the randomization does not “work” so that 
an imbalance exists for a particular potential confounder, then confounding with respect to that 
potential confounder can occur.  The greater the number of participants, the less likely that any 
meaningful imbalance will occur by chance. 

Case-control studies 

In a case-control study, the study base is the underlying population that is being followed through 
the window of the case-control design.  For confounding to occur, the exposure and potential 
confounder (risk factor) must be associated in that underlying population (source population from 
which cases arise).  But since the investigator observes that population only indirectly, the matter is 
trickier.  However, if there is no association between the potential confounder and exposure in the 
study base, then confounding does not occur even if we do find the potential confounder and 
exposure to be associated within the control group of our case-control study (Miettinen and Cook, 
cited in Rothman, page 93). 

This somewhat surprising result is easily illustrated.  Suppose we are observing a population over 
time to examine an association between a suspected occupational carcinogen and a cancer that is 
also strongly (IDR=10) related to cigarette smoking.  Suppose also that the occupational exposure is 
in fact a carcinogen and that in this population smoking is not associated with the occupational 
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exposure.  If we assume a baseline rate of 3 cases/1,000 person-years and an IDR of 3.3 for the 
occupational carcinogen, the follow-up of the population might produce the following table. 

Incidence rates, population sizes, and number of cases 
for hypothetical data on an occupational exposure and smoking 

 Smokers Nonsmokers 
 ––––––––––––––––– ––––––––––––––––– 
 Exposed Unexposed Exposed Unexposed
 ––––––– ––––––– ––––––– ––––––– 
 (1) (2) (3) (4) 
1. Number of cases 300     90     70      21     
2. Population size (person-years) 3,000 3,000 7,000 7,000 
3. Incidence density per 1,000 py 100 30 10 3 

 IDR = 3.3 IDR = 3.3 

With a hypothetical 7,000 person-years of observation for nonsmokers who are also not exposed to 
the carcinogen, the assumed baseline incidence rate of 3/1,000 py will produce an expected 21 
incident cases.  If the amount of person-time among exposed nonsmokers is also 7,000 py, then we 
would expect 3.3 × 3/1,000 py × 7,000 py ≈ 21 cases for that group.  If person time for exposed 
and unexposed smokers is 3,000 py for each group, then we expect 300 and 90 incident cases, 
respectively, if the IDR for the occupational exposure is the same among nonsmokers and smokers 
and the IDR for smoking is 10, regardless of occupational exposure.  

Note that this hypothetical population has been constructed so that the proportion of exposed 
person-years is 50% among smokers (columns 1 and 2), among nonsmokers (columns 3 and 4), and 
overall, i.e., no association between smoking and the occupational exposure. Similarly, the 
proportions of person-years for smokers among exposed (columns 1 and 3) and unexposed 
(columns 2 and 4) are each 30% (3,000/[7,000+3,000]).  The crude IDR for the occupational 
carcinogen is therefore 3.3 (be certain that you can derive this IDR), which is identical to the IDR 
for the exposure among smokers and among nonsmokers.  Thus, confounding is not present. 

Suppose now that we were to conduct a case-control study in this population during the same 
period of time.  If there is a cancer registry we might hope to identify and include all 481 cases (see 
row 1 in the following table, which is identical to row 1 in the preceding table).  If we obtain a 5% 
representative sample of the population as our control group, then the distribution of smoking and 
the occupational carcinogen in our control group (row 2 in the following table) will be the same as 
the distribution of these variables in the population-time in row 2 of the preceding table (30% 
smokers and 50% exposed to the occupational carcinogen, with no association between these two).  
The OR (be certain that you can calculate this) will be identical to the IDR of 3.3, above.  In this 
case-control study with an (unbiased) control group that is directly proportional to the study base, 
there is no confounding. 



 

_____________________________________________________________________________________________ 
www.epidemiolog.net, © Victor J. Schoenbach 2000  11. Multicausality: Confounding - 349 
rev. 5/11/2001, 11/22/2003, 3/21/2004 
 

Different control groups for hypothetical case-control study 
of an occupational exposure and smoking 

 Smokers Nonsmokers 
 ––––––––––––––––– ––––––––––––––––– 
Row Exposed Unexposed Exposed Unexposed
 ––––––– ––––––– ––––––– ––––––– 
 # (1) (2) (3) (4) 
1. Number of cases 300 90      70       21      
2. Proportional controls 150 150 350 350 
 (OR = 3.3) (OR = 3.3) 
3. Biased controls 250 150 250 350 
 (OR = 2.0) (OR = 4.7) 

Suppose, however, that controls are selected in a biased fashion, producing a biased control group 
(row 3 in the second table) in which smoking and exposure are associated (verify this fact; try, for 
example, computing the OR for smoking in relation to exposure).  Reflecting the biased control 
group, the stratum-specific IDR’s are no longer 3.3.  However, in this chapter our focus is the crude 
association and whether it accurately represents the true situation (which in this instance we 
constructed, rather than having to regard the stratified associations as the true situation).  The crude 
OR from the above table, using the cases on row 1 and controls from row 3, is (do try computing 
this before reading the answer) (370 × 500) / (111 × 500) = 3.3.    

Thus, even with this biased control group the crude OR remains unconfounded.  Yet, the potential 
confounder (smoking, a causal risk factor for the outcome) is indeed associated with the exposure in 
the (biased) controls.  [Several ways to see this association are: 

The odds of exposure among smokers (cols. 1 and 2) are 250/150, quite different from the odds 
of exposure among nonsmokers (cols. 3 and 4: 250/350), producing an odds ratio between 
smoking and exposure of OR = 2.3). 

Proportionately more smokers are exposed [250/(250 + 150) = 0.63] than are nonsmokers 
[250/(250 + 350) = 0.42]. 

The odds of smoking among exposed (cols. 1 and 3) are 250/250, quite different from the odds 
of smoking among the unexposed (cols. 2 and 4): 150/350), producing, of course, the same 
odds ratio, 2.3). 

Proportionately more exposed are smokers [250/(250+250) = 0.5] than are unexposed 
[150/(150 + 350 ) = 0.3]. 

The potential confounder, smoking, is also associated with the outcome in the unexposed (e.g., IDR 
= 30 per 1,000py / 3 per 1,000py in the study base, OR = (90 × 350) / (21 × 150) in the case-
control study with either control group.  Thus, it is possible to have a risk factor that is associated 
with exposure in the noncases yet not have confounding. 
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Further insight can be gained by considering the mechanism that causes confounding, as illustrated 
in the Type A behavior example.  Confounding results from an imbalance between exposed and 
unexposed groups in regard to a disease determinant.  If the potential confounder increases disease 
risk and the potential confounder is associated with the exposure, then incidence of disease in the 
exposed will be boosted relative to that in the unexposed, due to the confounder.  This 
disproportionate increase in incidence, and therefore in cases, will increase the odds of exposure in a 
representative group of cases.  If the confounder is not controlled in the analysis, this increased odds 
will cause confounding of the exposure-disease association. 

The (exposure) OR for the outcome is simply the ratio of the exposure odds in the case group 
divided by the exposure odds in the control group.  The exposure odds in the case group is 
obviously not affected by anything that happens to the control group (including matching, 
incidentally).  So a distortion of the crude OR will have to come from a change in the exposure odds 
in the control group.  So long as the bias in the control group does not cause its crude exposure 
odds to differ from those in the source population (e.g., 0.5/0.5=1.0 in our occupational carcinogen 
example), the crude OR will remain the same as in the source population, i.e., unconfounded. 

In most case-control studies we have little independent information about the study base, so the 
control group provides our window into the study base.  If the control group is biased, then our 
view of the study base is distorted, and we may conclude that the condition for confounding (i.e., a 
risk factor for the disease is associated with the exposure in the noncases) is met.  Due to such a 
biased control group, controlling for the potential confounder will introduce bias in this analysis 
(e.g., in the above example, the stratum-specific OR’s are different from the correct value of 3.3).  
However, a weighted average of stratum-specific OR’s may be close to the crude value. 

Statistical tests for confounding 

Since confounding requires an association between the potential confounder and the exposure, 
investigators sometimes present statistical tests of the differences in potential confounders between 
exposure groups.  If the groups do not differ significantly, the investigators conclude that 
confounding will not occur.  This practice will often yield a correct conclusion, though it is 
somewhat off the mark. 

Statistical tests of significance address the question of whether or not there is an association between 
the exposure and the potential confounders beyond that likely to arise by chance alone.  But 
confounding depends upon the magnitude of association (e.g., odds ratio, prevalence ratio), rather 
than on the strength of evidence that it did not arise by chance.  So a large but “nonsignificant” 
difference can have more potential to cause confounding than a small but “highly significant” 
difference.   The reason for this apparently paradoxical statement is that statistical significance 
depends upon the magnitude of the number of exposed and unexposed participants, so that nearly 
any association will be statistically significant if the study is sufficiently large and nonsignificant if it 
is sufficiently small.  The presence or extent of confounding, however, is not affected by scaling up 
or down the number of participants. 
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Confounding, then, is a function of the magnitude of associations, rather than of their statistical 
significance.  Since strong associations are likely to be statistically significant, statistical tests 
comparing exposed and unexposed groups can be a convenient device for identifying associations 
that may be strong enough to cause confounding, which is why the procedure often yields the 
correct conclusion about the need to control for confounding.  Some (see Rothman and Greenland) 
have suggested using significance testing with a value for alpha (Type I error probability) of 0.20, to 
increase the power to detect differences that may be important in regard to confounding.  But as a 
guide to likely confounding, statistical tests are somewhat beside the point.  (There is a subtle but 
valuable distinction to be made between statistical tests to evaluate confounding and statistical tests 
to assess whether randomized allocation to treatment or control “worked”.  Since randomized 
allocation attempts to operationalize “chance”, the number and size of observed differences 
between treatment and control groups should not often exceed what we expect from chance, which 
is precisely what statistical tests are designed to evaluate.  If there are more differences than there 
“should be”, that may indicate some problem in the implementation of the randomization.  It would 
also be expected that control for these differences would be needed.) 

Components of the crude relative risk 

There are several other aspects of confounding that it will be instructive to consider.  The first of 
these is a method, due to Miettinen (Miettinen OS:  Components of the crude risk ratio.  Am J 
Epidemiol 1972; 96:168-172) for allocating an observed association to a component due to 
confounding and a component due to the study factor of interest.  According to Miettinen, the 
crude risk ratio (or odds ratio) may be regarded as the product of a “true” risk ratio and a 
component due to confounding.  In the examples we have considered thus far, the whole of the 
observed association has been due to confounding, i.e., to the effect of smoking.  But it is also 
possible to have an association that remains, though stronger or weaker, after the effects of a 
confounder have been removed. 

The following hypothetical data illustrate Miettinen’s concept.  Suppose that you are carrying out a 
case-control study to investigate whether trihalogenated hydrocarbons that occur in chlorinated 
drinking water containing organic matter increase colon cancer incidence.  You collect data on all 
cases in a multi-county region during several years and assemble a control group using random-digit 
dialing.  You interview cases and controls about their source of drinking water (treated surface water 
versus well or bottled water) and, because other studies have suggested that some unknown factor in 
urban living increases colon cancer incidence, you also collect data on urban-rural residence.  The 
crude analysis of your data yields the following table: 
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Table 7a 
Colon cancer and drinking water (hypothetical case-control data) 

  _
 

 

 E E Total 

Colon cancer cases 170 80     250 
Controls 80     170 250 

Total        250 250 500 

The crude OR for this table is (170 x 170) / (80 x 80) = 4.5.  Is it confounded by rural-urban 
residence? 

We can investigate confounding by stratifying the data by urban-rural residence and examining the 
stratum-specific OR’s: 

Table 7b 
Colon cancer and drinking water (hypothetical case-control data) 

 Rural Urban Crude     
  _  _  _ 
 E E E E E E 

D 20 30 D 150   50 D 170   80 
_   _   _   

D 50 150   D 30 20 D 80 170   

The OR’s in both the rural and urban strata are 2.0, so we know that the crude OR is confounded – 
it overstates the “true” OR, making a moderate association appear as a strong one.  How much of 
the crude OR can be attributed to confounding?  Miettinen suggests that the OR due to 
confounding is the OR for the association that would be observed even if the exposure 
(trihalogenated hydrocarbons) had no effect on the outcome (colon cancer).  If the exposure has no 
effect on the outcome, then whatever association remains in the crude analysis must be due entirely 
to confounding. 

So to obtain the OR attributable to confounding, we can eliminate the true association between 
trihalogenated hydrocarbons and colon cancer.  In the above example, we regard the stratum-
specific tables as displaying the true relationship (i.e., we are assuming that there is no selection bias, 
or information bias and that the only potential confounder is rural-urban residence as a 
dichotomous variable measured without error).  So we will “eliminate” the true association from the 
stratum-specific tables.  Then we can combine the modified stratum-specific tables into a new crude 
table and compute a new crude OR.  That OR must entirely reflect confounding, because the true 
association no longer exists. 

Since the OR is the crossproduct ratio for the four cells of a table, we can change the OR by 
changing any cell of the table.  By convention, we change the “a”-cell (exposed cases) to what it 
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would contain if there were no association between the study factor and the disease.  Here, if the 
D,E cell in the rural stratum contained 10 instead of 20, then the OR for the rural stratum would be 
1.0, i.e., no association.  Similarly, if the D,E cell in the Urban stratum contained ___ (your guess?) 
instead of 150, then the OR for that stratum would likewise be 1.0.  The revised tables are shown 
below: 

Table 7c 
Modified tables for Colon cancer and drinking water 

 Rural  Urban Modified crude    Original crude    
  _   _  _   _ 
 E E  E E E E  E E 

D 10 30 D ___ 50 D 85 80 D 170   80 
__    __    __   __    
D 50 150   D 30 20 D 80 170   D 80 170   

           

The OR for the modified crude table, and therefore the component attributable to confounding, is 
2.25.  Interestingly, this figure is the same as the quotient of the original crude (4.5) and controlled 
odds ratios (2.0).  Indeed, this relationship holds in general:  the crude OR equals the product of the 
controlled OR and the component attributable to confounding: 

 
Crude odds (or risk) 

ratio 
= Component due to study 

factor 
x Component due to 

confounding 

So the component (of the crude ratio) attributable to confounding is the degree of association 
“expected” from the distribution of the potential confounder (in this case, rural-urban residence), 
i.e., from the fact that the potential confounder is distributed differently in exposed and unexposed 
persons in the study base. 

Another way to look at this relationship is that the component attributable to the effect of the study 
factor, i.e., the unconfounded association, can be written as:  
 

  Crude odds (or risk) ratio 
Component due to study factor = ––––––––––––––––––––––––––

  Component due to confounding 

So the component (of the crude ratio) attributable to the study factor, i.e., the unconfounded, or 
“true”, association, can be regarded as the ratio of an “observed” association to an “expected” 
association.  Expressing the relationship in this way is reminiscent of the standardized mortality ratio 
(SMR), which is also a ratio of an “expected” to an “observed”.  In fact, Miettinen refers to the 
controlled OR above (i.e., the component due to the study factor) as an “internally standardized 
odds ratio”, which is simply the odds ratio version of the SMR.  It is also interesting to note that the 
stratum-specific OR’s are also ratios of “observed” to “expected”, in that these OR’s are equal to the 
ratio of the observed number of exposed cases (the contents of the “a-cell”) to the expected number 
in the absence of a true association. 
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By this point you may well be wondering how much of this you need to know to practice 
epidemiology or control for confounding.  The answer is that this particular formulation is not 
essential, but seeing confounding from this perspective is another aid to understanding the closely 
interrelated concepts of confounding, stratified analysis, standardization, and even the counterfactual 
framework of causal inference.  If the true causal comparison is between the experience in an 
exposed group and what their experience would have been in the absence of exposure, the SMR 
might be regarded as the most relevant adjusted measure of association, since it is the ratio of the 
observed rate in the exposed group to the rate that would be expected for them if they were not 
exposed (assuming that the rates in the study population differ from those in the standard 
population due only to the standardizing factor and the exposure). 

Matched studies 

Since confounding is a problem of comparison, a principal aim of study design is to obtain groups 
that are comparable with regard to determinants of the outcome.  In experimental designs, this aim 
is perhaps the principal motivation for randomized assignment of the study factor.  Since 
randomized allocation does not guarantee the equal distribution of all relevant factors (though in 
very large studies the probability of equal distribution is very high), prestratification (also called 
“blocking”) may be employed to enforce identical distributions when sample size is small. 
Prestratification involves first placing participants into groups according to their configuration of 
risk factors and then performing separate randomizations within each group.  The procedure 
generally increases statistical efficiency (degree of precision per trial participant) (see Rothman and 
Greenland, p161). 

Follow-up studies 

In a nonrandomized study, where the investigator does not have the opportunity to assign the study 
factor, the analogous procedure to prestratification is matching.  In matching, the participants in 
the comparison group (i.e., the unexposed group in a follow-up study or the control group in a case-
control study) are selected so as to resemble the index group (the exposed in a follow-up study or 
the cases in a case-control study) on one or more relevant factors.  When the unexposed group in a 
follow-up study has been matched to the exposed group on all relevant factors, so that the two 
groups differ only in terms of exposure to the study factor of interest, then the incidences in the two 
groups can be compared with no danger of confounding by the matching variables.  In practice, 
however, competing risks and/or loss to follow-up can introduce differences.  For this and other 
reasons (see Rothman and Greenland, p160), matched cohort studies are not common. 

In any case, neither prestratification nor matching is required to avoid confounding, since 
confounding can be controlled in the analysis of the study results – providing there is adequate 
overlap in risk factor distributions between groups.  For this reason, the primary purpose of 
matching is to increase statistical efficiency by ensuring sufficient overlap (which therefore indirectly 
aids in controlling confounding). 
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Case-control study 

In a case-control study the situation is, as usual, not as straightforward.  Because of the nature of the 
case-control study design, matching does not avoid confounding by the matching factor(s).  
Moreover, by changing the composition of the control group, matching in a case-control study can 
even cause the crude (uncontrolled) analysis to be biased.  How can this be? 

Since a case-control study selects participants according to disease, matching means ensuring that 
the case and control groups are the same in respect to the potential confounders.  However, as we 
saw earlier, confounding depends on the comparability of exposed and unexposed groups in the 
study base, not between cases and controls in the study population.  Although ensuring that cases 
and controls are similar with respect to potential confounders may facilitate control for confounding 
(through greater statistical efficiency), matching controls to cases does not change the study base and 
thus cannot alter the exposure odds among cases.  But confounding arises because the exposure 
odds in cases is influenced by a population imbalance in a cause of the outcome. 

Furthermore, by selecting the control group in a way that makes it conform to the case group in age, 
sex, treatment facility, or other factors, the investigator can cause the overall control group to have a 
different prevalence of exposure than that in the study base, which the control group seeks to 
reflect.  Of course, a matched control group can still provide a correct estimate of exposure 
prevalence within each configuration of risk factors.  So there need be no problem as long as the 
analysis takes account of the matching.  If the matched analysis and unmatched analysis yield the 
same results, then the unmatched analysis can be used, and for simplicity often is unless the matched 
analysis provides greater precision. 

Example of matching in a case-control study 

The following example may help to clarify these concepts.  Consider another study of colon cancer 
and drinking water, presented in the following table.  This time the stratum-specific population sizes 
and prevalences of exposure to chlorinated drinking water are presented, along with the number of 
cases and the prevalence of exposure among cases. 

Colon cancer and drinking water (hypothetical data) 

Residence 
Population 

size 

% of total pop. 
with 

chlorinated 
drinking water

 
 

# of colon 
cancer cases 

% of cases 
with 

chlorinated 
water      

Rural 400,000 20 % 30 40 % 
Urban 600,000 80 % 90 90 % 
Total 1,000,000   56 % 120   ___ % 

An investigator conducting a case-control study in this population and selecting community controls 
without matching, would observe an exposure prevalence of 56% (i.e., an average of the urban- and 
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rural-specific exposure prevalences, weighted by their respective population sizes:   
[0.20(400/1000) + 0.80(600/1000)]).  In contrast, a control group matched to the distribution of 
cases would have an exposure prevalence of 65% [0.20(30/120) + 0.80(90/120)], since in this case 
the two prevalences are weighted by the proportions of rural and urban cases, rather than the 
proportions of rural and urban residents in the population. 

The prevalence of exposure in the matched control group, 65%, is a distorted estimate of the overall 
prevalence of exposure in the population as a whole.  But the estimate is not a problem when our 
analysis takes rural-urban residence into account, since the stratum-specific exposure prevalences are 
still correct and we know the proportions of rural and urban residents in the population.  If the 
exposure prevalence (right-most column) is 40% in rural cases and 90% in urban cases, then the 
odds ratios are 2.67 (rural) and 2.25 (urban), 2.70 (crude, unmatched controls) and 1.85 (crude, 
matched controls).  Thus neither the matched nor the unmatched controls give a correct OR for a 
crude analysis.  In contrast, a stratified analysis that takes residence into account will yield a valid 
odds ratio estimate with either control group. (Suggestion: derive all of these OR’s.) 

For a fuller treatment of matching, see chapter 10 of Rothman and Greenland.  According to these 
authors, though there are circumstances where it is clearly desirable or not desirable, the value of 
matching in case-control studies is a complex question. 

Potential confounders versus actual confounders 

An issue of considerable practical and theoretical importance is how to choose which variables to 
investigate as confounders?  As we saw above, to be a confounder a variable must be associated with 
both the disease and the exposure.  Thus when through matching in a cohort study we ensure that 
the distribution of potential confounders is identical in both exposure groups (i.e., there is no 
association between these variables and exposure), then the former cannot confound our results 
(assuming no bias from competing causes of death and other attrition mechanisms).  Apart from 
that situation, we must control for potential confounders in the analysis of the study to see whether 
or not they have distorted the observed association (which implies that we have remembered to 
measure them!). 

Investigation of whether a variable is a potential confounder or an actual confounder is thus 
generally a matter of empirical determination in our data.  In practice, therefore, the question of 
whether or not variable X is a confounder is a side issue.  Our primary concern is to obtain a valid 
estimate of the relationship between study factor and outcome.  If we have to control we do; if we 
do not need to, we may not.  In either case we are not particularly concerned, ordinarily, about 
concluding that such-and-such a variable is a confounder. 

But which variables to regard as potential confounders, i.e., which variables must be measured and 
possibly controlled in order to obtain a valid estimate of the association between study factor and 
outcome, is a matter of first importance.  Our decisions here depend upon our understanding of 
which variables other than our study factor might explain or account for an observed relationship 
(or lack thereof).  Thus, the decision about whether a variable ought to be considered for control as 
a potential confounder rests first and foremost on our conceptual model. 
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First and foremost, a potential confounder must have some relationship to the occurrence of the 
disease or other outcome.  The potential confounder must increase the probability that the disease 
will occur or must shorten the time until the disease occurs.  If not, why should we attribute an 
observed association to that variable rather than to our study factor?  (Since disease occurrence must 
be observed, a factor that affects disease detection may also qualify.)  Furthermore, if the relevant 
variable occupies an intermediate position in the hypothesized causal chain linking the study factor 
to the disease, then again, how could that variable rather than the study factor be the “true” cause of 
an observed association?  (If I persuade George to rob a bank and the police find out, can I 
persuade the judge to set me free because apart from what George did I did not rob anything?)  
Thus, in stratifying on smoking status in our Type A - CHD example, we are assuming that the 
association between Type A behavior and smoking arises due to a common antecedant cause (e.g., 
inadequate coping skills in a high-pressure occupational environment) or due to an effect of 
smoking status on behavior pattern, but not due to an effect of behavior pattern on smoking status, 
which would make smoking an intervening variable and therefore not appropriate for control in this 
way (Kaufman and Kaufman, 2001).  

In practice, however, it is often difficult to make definite decisions about which variables are true 
risk factors, which are intervening variables, and so on, so that a cautious approach is to obtain data 
on as many potentially relevant variables as possible, explore the effects of controlling them in the 
analysis of the study, and then attempt to make sense out of the results.  Consider, for example, a 
study of the effect of overweight on CHD incidence.  Since overweight increases cholesterol and 
blood pressure levels, both of which are causal risk factors for CHD, then the crude association 
between overweight and CHD will reflect some combination of: 

1. a direct effect of overweight on CHD if such exists, 

2. an indirect effect of overweight on CHD due to the effect of overweight on cholesterol and 
blood pressure, which in turn increase CHD risk 

3. possible confounding, if cholesterol and blood pressure are higher in people who are 
overweight not because of an effect of overweight but due to some other reason (e.g., diet, 
sedentary lifestyle, genetic factors). 

Should we control for blood pressure and cholesterol when estimating the association between 
overweight and CHD?  If we do not, then our measure of association will be distorted to the extent 
that confounding is present.  If we do control by the usual methods, however, our measure of 
association will be distorted to the extent that overweight has its effects on CHD through increases 
on blood pressure and cholesterol. 

For another example, consider the problem of studying whether sexually transmitted diseases such 
as gonorrhea increase the risk of acquiring HIV and whether condom use decreases the risk.  Should 
the relationship between STD and HIV seroconversion be controlled for condom use?  Should the 
relationship between condom use and HIV incidence be controlled for STD?  Both condoms and 
STD appear to affect the risk of acquiring HIV infection, but condoms are also a means of 
preventing STD, which in that sense can be regarded as a variable located on the causal pathway 
from condoms to HIV.  ’Furthermore, an obligatory causal factor for both sexually-acquired STD 
and/or HIV is sexual contact with an infected partner.  “Risky” partners have a higher probability of 
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being infected, and the more of them, the greater the risk of exposure to the infection.  Should we 
control for the number of risky partners in investigating the relationship among condoms, STD, and 
HIV?  But risky partners are also a risk factor for STD, so that STD can be regarded as an 
intermediary variable between sex with risky partners and HIV.  Thus, thinking through which 
variables to control for in a web of causation can itself be confounding!  Greenland, Pearl, and 
Robins (1999) present a system of causal diagrams for describing and analyzing causal pathways to 
identify what variables must be controlled.  Among other points, they explain that controlling for a 
variable can in some situations create confounding which would otherwise not occur.  In general, 
control for confounding (and interpretation of data in general) is founded on assumptions of causal 
relationships involving measured and unmeasured variables.  Data alone are inadequate to resolve 
questions of causation without these assumptions.  Methodological understanding in this area is 
expanding (see the articles by Greenland, Pearl and Robins and Kaufman and Kaufman).  However, 
limited knowledge of causal relationships in addition to the one under study and the likely existence 
of unmeasured but important variables will remain fundamental stumbling blocks for observational 
research.. 

Controlling for sociodemographic variables 

Nearly all epidemiologic investigations control in some way or other for sociodemographic variables 
(e.g., age, gender, race, socioeconomic status).  As we saw in the chapter on Standardization, 
comparisons that do not control for such variables can be very misleading.  However, there are 
significant issues of interpretation of adjustment for sociodemographic factors, partly because 
associations with sociodeomographic factors likely reflect the effects of factors associated with 
them, and some of these factors may be intervening variables.  For example, studies of ethnic health 
disparities often attempt to control for differences in socioeconomic status.  However, it has been 
argued that socioeconomic status is an intervening variable between ethnicity and health outcomes, 
so that its control by the usual methods is problematic (Kaufman and Kaufman, 2001).  The 
problem of interpretation is compounded when the persistence of an association with ethnicity, 
despite control for other factors, prompts the investigator to make an unwarranted inference that a 
genetic factor must be at work.  It is also worth noting that the crude association presents the 
situation as it exists. Even if the causal explanation indicates other factors as responsible, the fact of 
disproportionate health status remains an issue to be dealt with.  Moreover, a remedy may not 
require dealing with the “real” cause. 

“Collapsibility” versus “comparability” 

Although the problem of confounding and the need to control for it have long been a part of 
epidemiology and other disciplines, theoretical understanding of the confounding has been 
developed largely since Miettinen’s articles in the mid-1970’s.  Two opposing definitions or 
perspectives have been debated during that time, one called “comparability” and the other called 
“collapsibility”.   

In the comparability definition, advocated by Sander Greenland, James Robins, Hal Morgenstern, 
and Charles Poole, among others (see bibliography for article “Identifiability, exchangeability, and 
epidemiological confounding” and correspondence “RE: Confounding confounding”), confounding 
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is defined in relation to the counterfactual model for causal inference, described in the beginning of 
this chapter.  Confounding results from noncomparability, i.e., a difference between the distribution 
of outcomes for the unexposed group to what would have been observed in the exposed group if it 
had not been exposed.  Since the latter value is hypothetical and unobservable, the comparability 
definition cannot be directly applied, though it has some theoretical advantages as well as practical 
implications. 

In the collapsibility definition, advocated by D.A. Grayson (Am J Epidemiol 1987;126:546-53) and 
others, confounding is present when the crude measure of association differs from the value of that 
measure when extraneous variables are controlled by stratification, adjustment, or mathematical 
modeling.  If 2 x 2 tables for different strata of a risk factor (as in the Type A example above) 
produce measures of association (e.g., RR’s) that are essentially equivalent to the measure of 
association for the “collapsed” 2 x 2 table (disregarding the risk factor used for stratification), then 
there is no confounding in regard to that measure of association.  The collapsibility definition is 
readily applied in practice and is widely used.  Disadvantages for this definition are that it makes 
confounding specific to the measure of association used and the particular variables that are being 
controlled. 

Fortunately for practicing epidemiologists, the two definitions generally agree on the presence or 
absence of confounding when the measure of effect is a ratio or difference of incidences 
(proportions or rates).  The major practical problem arises when the measure of association is the 
odds ratio (unless the situation is one where odds ratio closely estimates a risk or rate ratio, e.g., a 
rare outcome).  Further explanation of this and related issues are presented in the Appendix (and in 
Rothman and Greenland). 

Controlling confounding 

Now that we are all impressed with the importance and value of taking into account the effects of 
multiple variables, what are some of the analytic approaches available to us?  The principal ones are 
the following: 

• Restriction 

• Matching 

• Stratified analysis 

• Randomization 

• Modeling 

Restriction 
When we adopt restriction as an approach, we are in effect opting not to attempt a multivariable 
analysis – we simply restrict or confine our study to participants with particular characteristics (e.g.,  
male, age 40-50, nonsmokers of average weight for height, with no known diseases or elevated 
blood pressure) so that we will not have to be concerned about the effects of different values of 
those variables.  Restriction of some sort is nearly always a part of study design, since virtually all 
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studies deal with a delimited geographical area, specific age range, and so on, though the motive may 
be feasibility rather than avoidance of confounding.  If it is known or suspected that an association 
is strongest in a particular population subset, then it may make sense to focus studies in that group.  
Or, if there are few data available that apply to a particular population, it may make sense to restrict 
study participants to persons in that population.  Restriction is also useful when an important 
variable (particularly a strong suspected risk factor) is very unevenly distributed in the target 
population, so that it will be difficult and expensive to obtain enough participants at the less 
common levels of that variable. 

Considerations such as these have often been cited as the reason why so many studies in the United 
States have enrolled only white participants, often only white males.  For example, in many potential 
study populations (defined by geography, employment, or membership), there are (or were) too few 
members of minority groups to provide sufficient data for reliable estimates.  Reasoning that in such 
a situation stratified analysis by race/ethnicity is essentially equivalent to restriction to whites only, 
investigators often simply limited data analysis or data collection to whites.  The reasoning behind 
limiting studies to males has been that because of the very different disease rates in men and women, 
studies of, for example, CHD in middle-aged persons, require many, many more women than men 
in order to obtain a given number of cases (and therefore a given amount of statistical power or 
precision).  The fact that until about the 1980’s the number of women epidemiologists and their 
representation in policymaking were fairly small may also have had some influence.   

The reasons for restricting study participants according to race/ethnicity are more complex.  If 
race/ethnicity (the term “race” virtually defies precise definition) is not a risk factor for the outcome 
under study, then there is no need to stratify or restrict by race/ethnicity in order to control for 
confounding.  But the United States’ ever-present racial divide and its accompanying pervasive 
discrimination, widespread exploitation, frequent injustices, recurrent atrocities, and continuing 
neglect by the dominant society have created intellectual, attitudinal, political, and logistical barriers 
to race-neutral research (see bibliography; the states of the American south maintained legally-
enforced apartheid well into the 1960’s, and extra-legally enforced apartheid continues to this day).  
Many of these issues have also arisen for other United States populations with ancestry from 
continents other than Europe. 

The concept of race as a powerful biological variable capable of confounding many exposure-disease 
associations has its historical roots in 19th century “race science”, where various anatomical, 
physiological, and behavioral characteristics, assumed to be genetically-based, were interpreted as 
demonstrating the relative superiority/inferiority of population groups and justifying the 
subordination by whites of colored peoples (Bhopal, Raj.  Manuscript in preparation, 1996; see 
bibliography for additional references).  Various diseases and conditions were linked to racial groups 
(including “drapetomania”, the irrational and pathological desire of slaves to run away, and 
“dysaethesia Aethiopica” [“rascality”]).  One reads in medical books from the period that blacks are 
“an exotic breed”. 

Most of these ideas are now widely discredited, though by no means extinct (see Carles Muntaner, 
F. Javier Nieto, Patricia O’Campo “The Bell Curve: on race, social class, and epidemiologic 
research”. Am J Epidemiol, September 15, 1996;144(6):531-536).  But until recently the vast majority 
of epidemiologic study populations have been white, English-speaking, urban or suburban, and not 
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poor.  A scientific basis linking race itself to health outcomes has emerged for only a handful of 
conditions (most prominently skin cancer and sickle cell trait and disease).  But the suspicion that 
race could be a risk factor is difficult to dispel, in part because it is reinforced by the many race-
related differences in health outcomes.  These differences presumably arise from differences in diet 
and nutrition, physical and social environment, early life experiences, economic resources, health 
care, neighborhood characteristics, social interactions, experiences of discrimination, lifestyle 
behaviors, and the host of other factors that affect health and wellbeing, but race is a much more 
easily measured (if not defined) surrogate for risk. 

In addition, many of these differences present logistical challenges (e.g., unfamiliarity of [primarily 
white, middle class] researchers and staff in studying persons and communities from other 
backgrounds, distances from research institutions, limited infrastructure, scarcity of questionnaire 
and other measurement tools that have been validated on multiple racial/ethnic groups, among 
others).  The practical aspects of epidemiologic studies typically demand a great deal of time, effort, 
and cost, so it is natural to seek ways to reduce these. 

Whatever the motivations and their merits, the overall impact of focusing research on white, 
English-speaking, urban/suburban, nonpoor populations is a scarcity of knowledge, research 
expertise, data collection tools, and ancillary benefits of participation in research (e.g., access to 
state-of-the-art treatments, linkages between health care providers and university research centers) 
for other populations – even for conditions for which these populations have higher rates or for 
which there are scientific or public health reasons for questioning the applicability of findings for 
Americans of European extraction to people of color or Latino ethnicity. 

Since about the mid-1980’s, partly in response to prodding from Congressionally-inspired policies of 
the National Institutes of Health and Centers for Disease Control and Prevention that now require 
all grant applicants to provide strong justification for not including significant numbers of women 
and minorities in proposed studies, research on understudied populations has increased substantially.  
These policies and the measures taken to enforce them have created new challenges for 
epidemiologists and in many cases have increased the complexity of epidemiologic studies.  
However, epidemiology cannot on the one hand claim that it is an essential strategy for improving 
public health and on the other hand largely ignore one-fourth (minorities) or five-eighths (women 
plus minority men) of the population. 

Several years ago the American College of Epidemiology issued a “Statement of Principles on 
Epidemiology and Minority Populations” (Annals of Epidemiology, November 1995;5:505-508; 
commentary 503-504; also under “policy statements” on the College’s web site, 
www.acepidemiology.org) recognizing the importance of minority health for public health, of 
improving epidemiologic data on minority populations, and of increasing ethnic diversity in the 
epidemiology profession.  The Statement has been endorsed by the governing bodies of various 
epidemiology and public health organizations, including the Council on Epidemiology and 
Prevention of the American Heart Association, North American Association of Central Cancer 
Registries, Association of Teachers of Preventive Medicine, American College of Preventive 
Medicine, American Statistical Association Section on Epidemiology in Statistics, American Public 
Health Association, and the epidemiology faculties at numerous institutions (e.g., Harvard, UNC, 
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University of Massachusetts at Amherst, and University of Texas Health Sciences Center). In 
January 2000, the U.S. Department of Health and Human Services announced the goal of 
eliminating racial/ethnic disparities in health by the year 2010.  This challenge and the related one of 
bringing racial/ethnic diversity to the epidemiology profession are fundamental to public health in 
the United States at least. 

Matching 

As discussed earlier, confounding by a risk factor(s) can be avoided in a follow-up study by ensuring, 
through matching, that the various exposure groups have the same (joint) distributions for those risk 
factor(s).  Thus in a cohort study or an intervention trial, we can select participants at one exposure 
level and then select participants for another exposure level (including “unexposed”) from a larger 
candidate population according to the distribution of selected risk factors in the first group. 

For example, consider a retrospective cohort study to investigate whether players in collegiate 
revenue sports (e.g., football, basketball), when they reach age 60, are more likely to have altered 
evoked potentials in response to auditory stimuli, suggestive of differences in neurologic function.  
The exposed cohort might consist of former basketball players from the team rosters of several 
universities, the comparison (unexposed) cohort of former students from the same universities 
during the same years. 

Since measurement of evoked potentials is a lengthy and expensive process, we want each 
participant to be as informative as possible, in order to minimize the total number of participants 
needed for the study.  If we choose unexposed participants completely at random, it is likely that 
they will differ from the basketball players in a number of ways (measured during their college years) 
that might affect evoked potentials – height, physical health, strength, agility, coordination, age (for 
example, the basketball players are unlikely to be mature students returning to complete a degree 
after taking time off to support a family), parental education, SAT (Scholastic Aptitude Test) scores 
(because athletes may be recruited for their talent even if their academic records are less 
competitive), and sex (revenue sports are, or at least were, all male).  Some of these characteristics 
may affect evoked potentials.  Thus, comparisons of evoked potentials at age 60 between the 
basketball players and the other alumni could be confounded by different distributions of these and 
other variables. 

When we attempt to control for these differences, we may find that they are so large that there are 
basketball players (e.g., those taller than 6-feet) for whom there are very few or no comparison 
subjects and comparison subjects (e.g., those shorter than 5-feet, 8-inches) for whom there are very 
few if any basketball players.  But strata with few basketball players or with few comparison subjects 
provide less information for comparing evoked potentials than do strata where the two groups are 
present in approximately equal numbers.  The findings from the analysis that controls for 
confounding will therefore be less “efficient”, in terms of information per subject, than if basketball 
players and comparison subjects had similar distributions of the risk factors being controlled.  With 
the same total number of subjects and the same risk ratio, the study with more similar comparison 
groups will yield a narrower confidence interval (greater statistical precision) as well as a smaller p-
value (greater statistical significance). 
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One way to obtain a better balance in risk factors between the basketball players and the comparison 
group is to match the comparison group to the basketball player group on the most important risk 
factors.   For example, we could stratify the basketball players by height and GPA (grade point 
average) during college.  A two-way stratification might have a total of 16 strata.  We could then 
select comparison subjects so as to have the same distribution across these 16 strata. Choosing the 
comparison group in this way is called frequency or category matching. (This study might also be a 
logical place to use restriction, e.g., to include only males, aged 18-22 years, without any medical or 
physical impairments.) 

The above method of frequency matching requires knowing the risk-factor distribution of the index 
group before enrollment of comparison subjects, so that the latter can be chosen to have the same 
distribution.  Another method of accomplishing frequency matching is paired sampling.  With paired 
sampling, a comparison subject is chosen sequentially or at random from among potential 
comparison subjects having the same covariable values as each index subject.  For example, every 
time a former basketball player enrolls in the study, we find a comparison subject belonging to the 
same height-GPA stratum as the basketball player.  Whenever we stop enrolling subjects, the two 
groups will have identical distributions across the 16 strata. 

Similar to paired sampling is pair matching.  In pair matching, we choose each comparison subject 
according to characteristics of an index subject, characteristics that not widely shared with other 
index subjects (i.e., strata are very small, possibly containing only one index subject each).  For 
example, we might decide to use as comparison subjects the brothers of the index subjects.  Or, we 
might decide that we wanted the joint height-GPA distribution to be so similar between player and 
comparison groups that we did not want to have to categorize the variables.  In this case we would 
choose each comparison subject to have his height within a certain range (e.g., 2 centimeters) of the 
index subject’s height and GPA within a certain small range of the index subject’s GPA (pair 
matching in this way is called “caliper matching”, though it has been criticized – see Rothman and 
Greenland). 

What differentiates pair matching from paired sampling and other forms of frequency matching is 
the tightness of the link between index and comparison subjects.  If there are multiple index-
comparison subject pairs in each stratum, so that the pairs could be dissolved, shuffled, and 
reformed, with no effect as long as all subjects stayed in their strata, then the situation is one of 
frequency matching.  If, in contrast, comparison subjects are for the most part not interchangeable 
with other comparison subjects, if each comparison subject is regarded as fully comparable only to 
the index subject with whom he is paired, then the situation is one of pair matching.  (For a 
discussion of paired sampling versus pair matching, see MacMahon and Pugh, 1970, pp. 252-256.  
Also, although the present discussion has focused on pairs, all of these concepts apply to triplets, 
quadruplets, and “n-tuplets”, as well as to variable numbers of comparison subjects for each index 
subject, e.g., the index subject’s siblings.) 

In case-control studies, as we saw earlier, the study architecture prevents us from ensuring that 
exposure groups are similar with respect to other risk factors even in the study population, and 
certainly not in the study base.  Therefore, matching in a case-control studies does not prevent 
confounding.  Matching can be beneficial, though, since if important potential confounders are 
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similarly distributed in cases and controls, the comparison of these two groups can be more 
statistically efficient – with the same number of participants, the confidence interval for the odds 
ratio estimate will be narrower (i.e., the estimate will be more precise). 

Unfortunately, the issue of whether or not it is beneficial to match controls to cases turns out not to 
have a simple answer, since in some cases matching can lead to reduced statistical efficiency.  If the 
matching variable(s) are strongly associated with the exposure, then the exposure prevalence in 
matched controls will be more similar to that in cases than would occur for an unmatched control 
group, thereby diminishing the observed strength of association between exposure and disease.  If 
the matching factors are not strong risk factors for the disease, then “overmatching” has occurred 
and a true association may be completely obscured. 

The current advice for case-control studies is to match only on strong determinants of the outcome 
under study, especially if they are likely to be very differently distributed in cases and controls.  Also, 
of course, do not match on a variable whose relationship to the outcome is of interest.  Once you 
have matched cases to controls on a variable, its odds ratio will be one.  Although matching in a 
follow-up study does not incur the problems that can arise in case-control studies, in any study 
design the use of matching can present practical and logistical difficulties, particularly if the pool of 
potential comparison subjects is small or if identifying or evaluating potential matches is costly. 

Randomization 

Randomization, the random assignment of participants to “exposed” or “treatment” and 
comparison groups, is available only in intervention trials.  Randomization will ensure that, on the 
average, index and comparison groups will have similar proportions and distributions of all factors.  
Of course, in any particular study the groups may (and often will) differ in one respect or another 
(i.e., the randomization will not “work”, though in a more precise sense, it does work – it just does 
not accomplish all that we would like it to).  So often intervention and control groups will be 
constrained to be similar (through matching, also called “pre-stratification”) or will be analyzed using 
stratified analysis. 

An important consideration regarding randomization – and its decisive advantage over any of the 
other methods available – is that on the average randomization controls for the effects of variables 
that cannot be measured or are not even suspected of being risk factors.  Unless a variable has been 
identified as relevant and can be measured, none of the other approaches described above (or 
below) can be used.  With randomization, we have the assurance that at least on the average we have 
accommodated the influence of unknown and unsuspected risk factors. 

Stratified analysis 

Stratified analysis involves the breaking down of an aggregate into component parts so that we can 
observe each subcomponent individually.  If smoking is a relevant factor for the disease under study, 
we simply say, “very well, we will look at the smokers and then we will look at the nonsmokers”.  
Most of the examples of confounding and effect modification we have examined have been 
presented in terms of stratified analysis. 
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Stratified analysis is intuitively meaningful and widely used.  It is particularly suited to the control of 
nominal variables (variables whose values have no ordered relation to one another, such as, 
geographical region [north, east, west]) and ordinal variables that have few categories (e.g., injury 
severity [minor, moderate, severe]).  Stratified analysis gives a “picture” of what is going on in the 
data, is easily presented and explained, and requires no restrictive assumptions about a statistical 
model. 

On the other hand, stratified analysis requires that continuous variables be categorized, which 
introduces a degree of arbitrariness and causes the loss of some information.  It is not possible to 
control for more than a few variables at the same time because as the number of strata grows large, 
understanding and interpreting the results may present a major challenge, especially if the results 
vary from one stratum to another without any obvious pattern.  Despite these drawbacks, stratified 
analysis is a mainstay of epidemiologic analysis approaches. 

When there are multiple strata, it may be difficult to describe and to summarize the results, 
particularly since many strata will contain relatively few participants, so differences might readily be 
due to random variation.  In such a case, various summary measures – generally different forms of 
weighted averages of the stratum-specific measures – are available.  A summary measure is a single 
overall measure of association over all strata (or over a subgroup of the strata), controlling for the 
variables on which stratification has taken place.  The standardized risk ratio (SRR) presented in the 
section on age standardization is one such summary measure.  Others will be presented in the 
chapter “Data analysis and interpretation”.  Of course, as with any summary measure, if there are 
important differences across strata an overall average may not be meaningful. 

Modeling 

Given an unlimited number of participants, and an unlimited amount of time, patience, and capacity 
to interpret data, we could approach any multivariable analysis problem by means of stratification.  
But consider the dimensions of the challenge:  if we have three variables, each dichotomous, there 
are eight possible unique strata; if we have six variables, each dichotomous, there are 64; if we have 
six dichotomous variables and three variables having three levels each, the number of strata soars to 
1728!  Imagine trying to interpret 1728 odds ratios, even assuming that we have enough participants 
for each one. 

Since we often have more than a few variables we wish to accommodate, and variables (e.g., age, 
blood pressure, body weight) are often continuous so that we stand to lose information by 
categorizing them into any small number of levels, there is an obvious need for some more 
sophisticated approach that does not require us to examine every possible combination of factor 
levels in order to uncover the effects of each variable.  There is such an approach – mathematical 
modeling – but its use involves a price, in terms of certain assumptions we make in the interests of 
simplifying the situation.  Another price we pay is that the data themselves are hidden from view.  In 
the words of Sir Richard Doll (interview with Beverly M. Calkins printed in the American College of 
Epidemiology Newsletter for Fall 1992): 
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“There have been many important steps along the way:  larger scale studies, more powerful statistical 
techniques, and the development of computers that allow these techniques to be applied.  I fear, 
however, that the ease of applying statistical packages is sometimes blinding people to what is really 
going on.  You don’t have a real close understanding of what the relationships are when you put 
environmental and all of the other components of the history together in a logistic regression that 
allows for fifteen different things.  I am a great believer in simple stratification.  You know what you 
are doing, and you really want to look at the intermediate steps and not have all of the data in the 
computer”. 

Limitations in the ability to control potential confounders 

Typically, epidemiologists do not know all of the determinants of the health conditions they study.  
Other determinants may be known but cannot be measured, either in general or in the 
circumstances under study.  Unknown and unmeasured potential confounders can be controlled 
only through randomization.  This unique advantage of randomized designs is a primary reason for 
their particular strength. 

Even for potential confounders that are controlled through restriction, matching, stratified analysis, 
or modeling, limitations or errors in the conceptualization, measurement, coding, and model 
specification will compromise the effectiveness of control.  Such incomplete control results in 
“residual confounding” by the potential confounder.  Residual confounding, like uncontrolled 
confounding, can lead to bias in any direction (positive or negative, away from the null or towards 
the null) in the adjusted measure of effect between the study factor and outcome.  Even if 
measurement error in the potential confounder is nondifferential (i.e., independent of the study 
factor and outcome), the bias in the association of primary interest can be in any direction. 

It is important to be aware of these limitations, but they are not grounds for discouragement.  
Notwithstanding these and other obstacles, epidemiology has provided and continues to provide 
valuable insights and evidence.  The limitations derive primarily from the subject matter – health -
related phenomena in free-living human populations – rather than from the discipline.  Remaining 
aware of limitations, minimizing them where possible, and insightfully assessing their potential 
impact in interpreting data are the mark of the well-trained epidemiologist. 

Confounding and effect modification 

As noted in the chapter on Causal Inference, epidemiology’s single variable focus, the one-factor-at-
a-time approach that underlies the evolution of epidemiologic understanding, is the basis for the 
concepts of “confounding” and “effect modification”.  There are also some similarities in the way 
that they are investigated in data analysis.  To make the distinction clear, we will contrast these two 
different implications of multicausality. 

If we observe an association between a disease and some new factor - but fail to adequately account 
for possible effects of known causes of the disease - we may erroneously attribute the association we 
observe to the new factor when in fact we may be seeing the effects of known factors.  
“Confounding” refers to a situation in which an observed excess of disease can be mistakenly 
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attributed to the exposure of interest when, in fact, some other factor – related to both the outcome 
and the exposure – is responsible for the observed excess.  For example, the crude death rate in 
Florida is higher than in Alaska.  If we attribute the higher death rate in Florida to the effect of citrus 
fruit industry, then we have fallen afoul of confounding.  For the underlying “true” reason for the 
higher Florida death rates is the older age distribution of the Florida population. 

When considering confounding, we are asking the question “Is the observed association between 
oral contraceptive use and myocardial infarction risk due to an effect of oral contraceptives or is the 
association actually due to the effects of other MI risk factors, such as cigarette smoking, elevated 
blood pressure, elevated blood cholesterol, and diabetes, that happen to be associated with oral 
contraceptive use?”  To answer that question, we will attempt to ascertain that the groups being 
compared are the same with regard to these “potential confounders” and/or we will examine the 
OC-MI relationship within categories of the “potential confounders” in an attempt to “hold other 
factors constant”. 

“Effect modification” refers to variation in the relationship between exposure and outcome, 
variation that is due to the actions of some other factor (called an effect modifier).  For example, the 
relationship between exogenous estrogens and endometrial cancer appears to be weaker in the 
presence of obesity.  The relationship between oral contraceptives and myocardial infarction appears 
to be stronger in women who smoke cigarettes than in those who do not. 

When considering effect modification, we are asking the question “Is the observed association 
between oral contraceptive use and MI risk importantly influenced by other MI risk factors, such as 
cigarette smoking, elevated blood pressure, elevated cholesterol, or even by factors which, by 
themselves, do not affect MI risk?”  To answer that question, we will examine the OC-MI 
relationship within categories of these “potential modifiers”.  We will also seek biological and/or 
behavioral explanations for possible modifying influences. 

With confounding, we are concerned with determining whether a relationship between our exposure 
and our outcome does or does not exist.  With effect modification, we are concerned with defining 
the specifics of the association between the exposure and the outcome.  That is, we are interested in 
identifying and describing the effects of factors that modify the exposure-outcome association.  The 
question about confounding is central in establishing risk factors.  The question about effect 
modification has important implications for defining disease etiology and for intervention.  
Confounding is a nuisance.  Effect modification, though for statistical reasons it may be difficult to 
assess, is of considerable potential interest. 

A mnemonic aid that may be helpful is the following.  An evaluation of confounding is an 
investigation into “guilt” or “innocence”.  An evaluation of effect modification is an investigation 
into “conspiracy”. 
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MAIN POINTS 

y Confounding is a distortion or misattribution of effect to a particular study factor.  It results 
from noncomparability of a comparison group. 

y A confounder is a determinant of the outcome or its detection, or possibly a correlate of a 
determinant, that is unequally distributed between groups being compared. 

y A determinant of the disease should appear as an independent risk factor, i.e., not one whose 
association with disease results from its association with the study factor. 

y A potential confounder (i.e., a disease determinant) need not be an actual confounder – an 
actual confounder must be associated with the study factor. 

y Confounding can be controlled in the study design and/or analysis. 

y Control through the study design is accomplished through restriction, matching 
(prestratification), or randomization. 

y Control in the analysis is accomplished through stratified analysis and/or mathematical 
modeling. 

y Adequacy of control is compromised by errors in the conceptualization, measurement, 
coding, and model specification for potential confounders. 

y Confounding deals with “guilt” or “innocence”; effect modification deals with “conspiracy”. 

y Discovery that an association arises from confounding does not make it less “real”, but does 
change its interpretation. 

y The crude association is real and for some purposes is the relevant measure. 
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Appendix 

The following discussion is for the more advanced student (either now or when you are taking a 
more advanced methodology course) – others can skip this section. 

Confounding:  “Comparability” versus “collapsibility” 

As presented earlier, the comparability definition labels as confounding a situation where the 
distribution of an outcome for the unexposed group differs from the (contrafactual) distribution for 
that outcome in the exposed group if it could be observed without the exposure.  The collapsibility 
definition sees confounding as a situation where the crude measure of association differs from the 
value of that measure when extraneous variables are controlled (by stratification, adjustment, or 
mathematical modeling).  The two definitions yield the same judgment in many situations, a major 
exception being those where the measure of association is an odds ratio which does not estimate a 
risk ratio (rare disease assumption not met) or a rate ratio (assumptions for estimating the IDR not 
met). 

The reason the odds ratio is different from the rate and risk ratios in this respect is related to the fact 
that unlike proportions and rates, the odds for a group are not a simple average of individual 
members’ odds (Greenland S. Am J Epidemiol 1987;125:761).  Stratified analysis simply places the 
individual members of a group into a handful of strata.   Since incidence for a group does equal the 
simple average of the risks (or “hazards”) for the individual members, the overall incidence (in 
exposed, unexposed, or overall) will also equal the average of the stratum-specific risks or rates, now 
weighted by the stratum size (number exposed, number unexposed, or total) as a proportion of the 
total (i.e., the distribution of participants across the strata). 

For risk or rate, therefore, the comparison (by means of a ratio or difference) of overall incidence in 
the exposed to overall incidence in the unexposed is a comparison of weighted averages.  If the 
weights in the exposed and unexposed groups are the same, then the comparison is valid (i.e., no 
confounding).  In this case, the overall incidence ratio (or difference) is a weighted average of the 
incidence ratios (or differences) across the strata, a condition for nonconfounding proposed by 
Boivin and Wacholder (Am J Epidemiol 1985;121:152-8) and implies collapsibility.  Since the weights 
are the distributions of exposed and unexposed participants across the strata, equal weights mean 
identical distributions, which in turn means that exposure is unrelated to the risk factor used to 
create the strata. 

If the distributions of exposed and unexposed participants across strata differ (i.e., the exposure is 
related to the stratification variable), then the overall incidence in exposed and in unexposed 
participants are averages based on different weights, so their ratio and difference will not be equal to 
a weighted average of the stratum-specific incidence ratios and differences.  Comparability and 
collapsibility are therefore not present, and the comparison between overall incidences is 
confounded by the stratification factor.  However, since the odds for the group is not a simple 
average of the odds for individual members, none of the above holds for the odds ratio unless it is 
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sufficiently rare that it approximates the risk ratio or has been obtained from a design that causes the 
odds ratio to estimate the incidence density ratio. 

Some of the relationships just presented can be readily demonstrated using simple algebra.  Let ai, bi, 
ci, di, n1i, and n0i in each stratum take on the values implied by the table below, and let their 
respective totals across all strata by a, b, c, d, n1, and n0 (i.e., a = all exposed cases, b = all unexposed 
cases, c = all exposed noncases, d = all unexposed noncases, n1 = all exposed persons, n0 = all 
unexposed persons). 

  Exposure   

Disease Yes No Total  

Yes ai bi m1 (ai + bi) 
No ci di m2 (ci + di) 

Total n1i n0i ni  

 (ai + ci) (bi + di)   

The incidence in exposed persons is ai/n1i within each stratum and a/n1 when the strata are ignored 
(i.e., the total, or crude table).  The (weighted) average incidence in the exposed across the strata is: 

 
n1i  ai  ai  a 
––– × ––– = ––– = –– Σ (
n  n1i 

)
 
Σ (

n 
)

 n 

where the summation goes over all strata.  a/n is simply the crude incidence in the exposed.  
Similarly, the weighted average of the stratum-specific risk ratios can be expressed as the sum across 
all strata of: 

 
wi  ai /n1i  wi  ai n0i 

––– × ––––– = ––– × ––––– 
W  bi /n0i  W  bi n1i 

where wi are the weights for each stratum and W is the sum of the wi.  If we let wi = bin1i /n0i, then 
we have the sum across strata of: 

bi n1i /n0i  ai n0i 
 

ai  a 
––––––––– × ––––– = ––– = ––– 

W  bi n1i  
Σ (

W 
) 

 W 

Meanwhile, W is the sum across all strata of: 
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  bi n1i 
wi = ––––– 
  n0i 

If exposure is unrelated to the stratification variables, so that the distribution of exposed  n1i /n1 is 
the same across strata as the distribution of the unexposed  n0i /n0, then the ratio of exposed to 
unexposed in all strata must be the same as in the overall table, n1/n0.  Therefore 

 
  bi n1i  bi n1    b n1 

wi = ––––– = –––– , whose sum is simply W = ––––– 
  n0i  n0    n0 

 

 ai  a   
Thus, the sum of ––– is ––––––– ,  which equals  

 wi  bn1 / n0   

 

a / n1  
––––– ,  the overall risk ratio.
b / n0  

 

So, when there is no confounding, the following three summary measures are all equal: 

 
  Overall incidence in exposed 

Overall risk (or rate) ratio = –––––––––––––––––––––––––– 
  Overall incidence in unexposed 

 

  Weighted average of incidence in exposed, across strata 
 = –––––––––––––––––––––––––––––––––––––––––––––– 
  Weighted average of incidence in unexposed, across strata 

 

 = Weighted average of stratum-specific risk (or rate) ratios 
 

With incidence odds and odds ratios, however, the above does not apply.  The overall incidence 
odds are simply a/c.  In contrast, the average of the stratum-specific odds, weighted by the number 
of exposed, is the sum over all strata of: 
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n1i  ai 
––– × –––
n1  ci 

It is possible to construct an incidence odds ratio that is a weighted average of the stratum-specific 
incidence odds ratios, and therefore a summary incidence odds ratio.  However, this summary 
incidence odds ratio will not be equal to a ratio of average stratum-specific incidence odds for 
exposed and average stratum-specific incidence odds for unexposed. 
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