12. Multicausality: Effect Modification

Issues in characterizing the combined effect of two or more causes of a disease (or,
equivalently, the effect of one factor in the presence or absence of other factors).

Multicausality

The rise of the germ theory of disease brought with it the paradigm of specificity of disease
causation, in which diseases were specific entities and each specific disease had a specific cause.
Since identifiable microorganisms could be linked to specific clinical syndromes and natural
histories, this paradigm contributed to the dramatic progress in medical microbiology and
development of antibiotics, which have transformed human vulnerability to infectious disease. The
doctrine of specific causation proved something of a hindrance, however, in the study of
noninfectious disease, notably in appreciating the health effects of tobacco smoke.

Now that the concept of multifactorial disease is fully accepted, we should perhaps adopt a more
relativist perspective, in which specificity of causation varies according to the "disease" (used
hereinafter to refer to any outcome of interest) and its definition, the type of causal agents or factors
we wish to consider, and on the stage in the causal process. John Cassel invited this way of thinking
when he described tuberculosis, a hallmark of the revolution in bacteriology, as a multifactorial
disease in regard to various characteristics of the host and his/her social environment. The
resurgence of mycobacterial tuberculosis in the United States during the 1980's, as a result of such
factors as the spread of HIV, the rise in homelessness, and the reduction of funding for tuberculosis
control, illustrates the importance of host and environmental factors for this disease.

The upsurge in syphilis in the southeastern region of the U.S. during a similar period provides
another example. In the chapter on Phenomenon of Disease, syphilis served as an example of a
disease defined by causal criteria and thus definitionally linked to a specific microorganism,
Treponema pallidum. Syphilis infection can induce a great variety of symptoms and signs, so great that
it has been called the "Great Imitator" (by Sir William Osler, I believe, who I think also wrote
"Know syphilis and you will know all diseases"). Given the diversity of ways in which syphilis
manifests, it is fortunate that we do not need to rely on manifestational criteria to define syphilis.
Nevertheless, although defined in relation to its "cause", syphilis can also be considered a
multifactorial disease, since risk of syphilis is related to personal and contextual factors such as
number and type of sexual partners, use of condoms, exchange of sex for drugs or money, use of
crack cocaine, access to care, proficiency of clinicians, effectiveness of public health services, degree
of social stigma, racism, and limited resources devoted to developing a vaccine. Since syphilis is not

transmitted in every unprotected exposure, there may be transmission and immune factors to add to
this list.

Similarly, coronary heart disease is a classic multifactorial disease, with an ever-growing list of risk
factors that includes at least atherogenic blood lipid profile, cigarette smoke, elevated blood
pressure, sedentary lifestyle, diabetes mellitus, elevated plasma homocysteine, and insufficient intake
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of dietary antioxidants. However, coronary artery disease is a clinically-defined entity that develops
from a composite of changes in the coronary arteries. As our understanding of the pathophysiology
and pathogenesis of coronary heart disease becomes more refined, researchers may eventually decide
that it is more useful to subdivide this complex disease entity into its specific pathogenetic processes,
which include certain types of injury to the coronary endothelium, growth of atheromas, and
thrombus formation. These different pathologies could be defined as separate diseases, even though
clinical manifestations usually require more than one to be present.

The one-variable-at-a-time perspective

Epidemiologists, however, typically focus on a single putative risk factor at a time and only
sometimes have the opportunity to focus on specific pathogenetic processes. One reason for this is
that epidemiology is in the front lines of disease control, and it is often possible to control disease
with only a very partial understanding of its pathophysiology and etiology. Once it was
demonstrated that cigarette smoking increased the risk of various severe diseases, including lung
cancer, coronary heart disease, and obstructive lung diseases, many cases could be prevented by
reducing the prevalence of smoking even though the pathophysiologic mechanisms were largely
unknown. Once it was found that AIDS was in all probability caused by an infectious agent and
that unprotected anal intercourse greatly facilitated its transmission, effective preventive measures
could be taken even before the virus itself was identified and the details of its pathogenicity
unravelled.

Thus, epidemiologists often find ourselves taking a "one-vatiable-at-a-time" approach to diseases of
unknown and/or multifactorial etiology. Lacking the knowledge needed to work from a
comprehensive model of the pathophysiologic process, epidemiologists attempt to isolate the effects
of a single putative risk factor from the known, suspected, or potential effects of other factors.
Thus, in the preceding chapter we examined how the effects of one factor can be misattributed to
another factor ("guilt by association") and considered ways to control for or "hold constant" the
effects of other risk factors so that we might attribute an observed effect to the exposure variable
under investigation.

Another consequence of the one-variable-at-a-time approach is the phenomenon that an association
we observe may vary according to the presence of other factors. From our ready acceptance of
multicausation, we have little difficulty entertaining the idea that some disease processes involve the
simultaneous or sequential action of more than one factor or the absence of a preventive factor.
Indeed, with the growth of genetic knowledge all disease is coming to be regarded as a product of
the interaction of genetic and environmental (i.e., nongenetic) factors.

But from the one-variable-at-a-time perspective, our window into these interdependencies comes
largely from measures of association and impact for each particular risk factor-disease relationship.
Thus, if two factors often act in concert to cause disease, we will observe the risk difference for one
of the factors to differ depending upon the level of the other factor. It may therefore be important
to control for factors that may modify a measure of effect of the exposure of primary interest.
Control may be necessary even if the susceptibility factor cannot itself cause the disease and so
would not qualify as a potential confounder.
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Interdependent effects

The preceding chapters have largely dealt with situations involving a single exposure and a single
outcome. The chapter on standardization of rates and ratios and the chapter on confounding
concerned the need to control for a variable, such as age or a second exposure, so that comparisons
could focus on the exposure of primary interest. We referred to the interfering variable as a
confounder or potential confounder — essentially a nuisance variable — that threatened to interfere
with our investigation of the primary relationship of interest.

We now want to consider another role for a second exposure variable. That role is involvement in
the pathophysiologic process or in detection of the outcome in concert with or in opposition to the
study factor (an exposure of primary interest). One of the factors may be regarded as a co-factor, a
susceptibility factor, a preventive factor, or something else whose effect is entwined with that of the
study factor.

Confounding, as we saw in the preceding chapter, results from an association between the exposure
and the confounder. But the effects of these two exposures on the disease can be independent of
one another. In fact, in the (hypothetical) Type A example, the exposure had no effect at all. In this
chapter we are interested in exposures whose effects on the outcome are interdependent.

There are innumerable scenarios we can think of where such interdependence occurs. One entire
category of interdependence involves genetic diseases whose expression requires an environmental
exposure. For example, favism is a type of anemia that is caused by consumption of fava beans in
people with reduced glucose-6-phosphate dehydrogenase (GPDH) activity. The anemia develops
only in response to a constituent of fava beans, but people with normal GPDH activity are
unaffected.

Another category of interdependence is that between exposure to infectious agents and immune
status. Measles occurs only in people who have not already had the disease and rarely in people who
have received the vaccine. People whose immune systems have been weakened by malnutrition or
disease are more susceptible to various 1nfect10us agents, and HIV infection can render people
vulnerable to a variety of infections called "opportunistic" because they occur only in
immunocompromised hosts.

Causal chains that involve behaviors provide many illustrations of interdependency in relation to
outcomes. Condoms reduce STD risk only when the sexual partner is infected. Airbags provide
lifesaving protection to adult-size passengers involved in frontal crashes but can harm small
passengers and provide less protection to persons not wearing a lap belt. Handguns are probably
more hazardous when in the possession of people with poor anger management skills.

Since very few exposures cause disease entirely by themselves (rabies virus comes close), nearly every
causal factor must modify the effect of other causal factors and have its effect modified by them.
When these other factors are unidentified, they are generally regarded as part of the background
environment, assumed to be uniformly distributed, and hence disregarded. Part of the challenge of
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epidemiologic research is to identify major modifying factors that are not uniformly distributed, so
that differences in findings across studies can be understood.

The terminology thicket

Even more than other areas of epidemiology, learning about how epidemiologists approach
interdependent effects is complicated by a two decades old controversy about definitional,
conceptual, and statistical issues and by a terminology that is as heterogeneous as the enrollment in a
large class in introductory epidemiology! The terms epidemiologists have used to discuss
interdependent or "joint" effects include: "synergy", "synergism", "antagonism", "interaction",
"effect modification" (and "effect modifier"), and most recently "effect measure modification".

"Synergy" or "synergism" is the term applied to a situation in which the combined effect of two
(or more) factors is materially greater than what we would expect from the effect of each factor
acting alone. "Antagonism" refers to the reverse situation, where the joint effect is materially less
than what we would expect. Synergism and antagonism are both types of "interaction".

The factors involved in an interdependent relationship can be regarded as having their effects
modified by each other, which gives rise to the terms "effect modification" and "effect modifier".
Sometimes the adjectives "quantitative" and "qualitative" are employed to distinguish between
situations where the modifying variable changes the direction of the effect of the primary exposure
or changes only the magnitude of effect. In quantitative effect modification, the modifier may
strengthen or weaken the effect of the primary exposure, but the direction of effect does not change.
In qualitative effect modification, the exposure either (1) increases risk in the presence of the
modifier but reduces risk in its absence or (2) increases risk in the absence of the modifier but
reduces risk in its presence. Although I first heard this distinction in a seminar presented by Doug
Thompson, he more recently has referred to qualitative effect modification as a crossover effect
(Thompson 1991).

Somewhere 1 picked up (or made up) the term "absolute effect modification" to refer to situations
where the effect of at least one factor occurs only in the presence (or absence) of another factor. In
such cases the first factor has no independent effect. In contrast, "relative effect modification"
refers to situations where both factors have independent effects on risk regardless of the presence or
absence of the other, but their joint effect is different from what one expects from their individual
effects.

[Since more than two factors are generally involved, that means that, for example, variable A can be
an absolute modifier of the effect of variable B (B has no effect without A) and a relative modifier of
the effect of variable C (C has an effect without A, but its effect is stronger [weaker] in the presence
of A). Whether B and/or C are absolute or relative modifiers of depends, in turn, on whether or
not A has an (independent) effect on risk without B and/or C. But we are getting ahead of
ourselves here.|

All of this terminology would be simply a matter of memorization were it not for one central
difficulty.  That difficulty arises in operationalizing the above concepts through the use of
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epidemiologic data. Put simply, there is no simple connection between the concepts expressed
above and the epidemiologic measures we have been using. Partly because of this disconnect, the
terms "interaction" and "effect modification" have been employed with different meanings at
different times by different authors (and sometimes by the same author). Thompson (1991:p221)
says that the two terms have different "shades of meaning" but (wisely) uses the two terms
interchangeably.

Previous editions of this chapter attempted to reduce terminology confusion by following the usage
in the first edition of Rothman's text Modern Epidemiology. Rothman used the term "biological
interaction” to refer to synetgy or antagonism at the level of biological mechanisms, such as that in
the favism example. He used the term "effect modification" to refer to data that give the
appearance of joint effects that are stronger or weaker than expected (statistical interaction falls into
this category). The second edition of Modern Epidemiology introduces a new term, "effect measure
modification", with the purpose of reducing the tendency to link data and biology through the use
of the same word. Kleinbaum, Kupper, and Morgenstern used the terms "homogeneity" and
"heterogeneity" to indicate similarity or difference in a measure across two or more groups. These
neutral terms, which carry no connotation of causation, may be the safest to use.

Statistical interaction

The term "interaction" has an established and specific meaning in statistics, where it is used to
characterize a situation where effects are not additive. (Statisticians have the significant advantage of
being able to use the term "effects" without a causal connotation.) For example, analysis of
variance is used to compare the means of one variable (e.g., blood pressure, BP) between two or
more populations. If we are concerned that BP is influenced by another variable (e.g., body mass
index, BMI) and that the two populations have different BMI distributions, we may want to adjust
the BP comparison for BMI. (The idea is similar to our computation of a standardized rate
difference to compare mortality rates in two populations.) If the relationship between BP and BMI
is linear, then the method of adjustment is called analysis of covariance and can be illustrated as
two lines on a pair of axes (see left side of figure).

The vertical distance between the lines represents the adjusted difference in mean BP between the
two populations. Unless the two lines are parallel, however, the distance between them will vary
with the level of BMI. The lines will be parallel when the slope of the relationship between BP and
BMI is the same in the two populations, i.e., the strength of the association between blood pressure
and BMI is the same in the two populations.

When the two lines are parallel, the blood pressures in the two populations can be represented by an
equation with three terms on the right-hand side — a constant (@), a variable (POP) indicating the
population in which the relationship is being estimated, and BMI, e.g.,

BP = a + b; POP + by BMI

in which a, by, and by will be estimated through a procedure called "linear regression".
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Since the indicator variable (POP) is usually coded as 0 for one population and 1 for the other, the
equations representing blood pressures are:

BP=a+ 0 + by BMI (POP=0)
in one population and:

BP =a+ by + by BMI (POP=1)
in the other.

b1 is then the vertical distance between the two lines, which corresponds to the adjusted difference

in mean blood pressure between the populations. by is the slope of the relationship between BP and
BMI, i.e. the number of units increase in BP associated with a one-unit increase in BMI. This term
accomplishes the adjustment needed for BMI. "a" is a constant that is usually needed to move the
lines to their correct vertical position.

In the right side of the figure, the two lines are not parallel — there is interaction. Since the distance
between the lines varies according to the level of BMI, the distance cannot be stated as a single
number. In the presence of interaction, the linear model for blood pressure requires the addition of
an "interaction term" to represent the varying distance between the lines:

BP = a + by POP + by BMI + bz (POP) (BMI)

With POP coded as 0 or 1, the first population will still have its blood pressures modeled by:
BP = a + by BMI. However, the data in the second population will be modeled as:

BP=a+by+byBMI+b3BMI  (POP=1)

b3 represents a further adjustment to account for the lack of parallelism and thus the inability of by
alone to represent the distance between the lines. The difference between the two populations will

be stated as (b1 + b3 BMI), so that it will be different for different levels of BMI.

www.epidemiolog.net, © Victor J. Schoenbach 12. Multicausality: Effect modification - 386
rev. 11/5/2000, 11/9/2000, 5/11/2001



Illustration of statistical interaction

These two lines are These two lines are not
parallel; they do not parallel; they exhibit
BP exhibit interaction. BP interaction.

///
/\Women Younger

0 BMI 0 BMI

If the figure on the left represents the relationship between blood pressure (BP) and body mass
index (BMI) in men (upper line) and women (lower line), then the graph shows that the association
of body mass and blood pressure is equally strong in both sexes — a one-unit increase in body mass
index in men and a one-unit increase in women both are associated with the same increase in blood
pressure. Therefore there is no (statistical) interaction.

In contrast, if the figure on the right represents the relationship in older people (upper line) and
younger people (lower line), then the graph indicates an interaction between body mass index and
age — a one-unit increase in body mass index in older people is associated with a larger increase in
blood pressure than is a one-unit increase in younger people.

Statisticians use the "interaction" to refer to the latter situation, where the equations for different
groups differ by a variable amount on a given scale (e.g., interaction may be present on the ordinary
scale but not on the log scale).

Biological interaction

Epidemiologists are more interested in what Rothman and Greenland call "biological interaction”.
Biological interaction refers to interdependencies in causal pathways, such as those discussed at the
beginning of this chapter. Such interdependencies — situations where one factor may potentiate or
inhibit the effect of another — have implications for understanding of disease etiology or
effectiveness of treatments or interventions. Laboratory researchers can readily observe such
interdependencies, but epidemiologists must content ourselves with analyzing clinical or population
data.
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Over two decades ago (Causes, Am J Epidemiol, 1976), Rothman introduced a diagrammatic
representation of multicausality in this biological or other mechanistic sense. He has continued to
elaborate this schematic model and uses it to illustrate and explain relationships between
epidemiologically-perceived relationships and "biological relationships".

Rothman's model envisions causal pathways ("sufficient causes") as involving sets of "component
causes". A "sufficient cause" is any set of component causes that simultaneously or sequentially
bring about the disease outcome. "Component causes" are the individual conditions, characteristics,
exposures, and other requisites (e.g., time) that activate the available causal pathways. Since there are
always causal components that are unknown or not of interest for a particular discussion, sufficient
causes include a component to represent them. Let us explore the way Rothman's model works.

"Cause" - (1) an event, condition or characteristic that plays an essential role in producing the
occurrence of the disease (this is a "component cause"); or (2) a constellation of components
that act in concert.

"Sufficient cause" - Set of "minimal" conditions and events that inevitably produce a disease;
none of the conditions is superfluous; most of the components are unknown.

"Necessary cause" - A causal component that must be present for the disease to occur.

The circle below represents a sufficient cause, e.g., a pathway, chain, or mechanism that can cause a
particular disease or other outcome. If all components are present, then the disease occurs (on
analogy with the game Bingo). A and B represent component causes. For this sufficient cause to
come into play, both A and B must be present. {U} represents the unknown background factors
that also must be present for this sufficient cause to operate.

{U}

If this diagram (model of biological, chemical, physical, psychological, etc. reality) represents the
primary or only pathway to the outcome, then component causes A and B have interdependent
effects. Each component cause must be present for the other to have its effect. We could say that
they are synergistic. The favism situation could be represented in this way, with A representing fava
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bean intake and B representing genetically-determined reduced glucose-6-phosphate dehydrogenase
activity. If this sufficient cause is the only causal pathway by which the disease can occur, then this
synergism is absolute: without A, B has no effect; with A, B does if the remaining components {U}
are present; without B, A has no effect; with B, A does (when {U} ate present). (If either factor is
preventive, then A or B represents its absence.)

If there were additional causal pathways containing B but not A, then the absence of A would not
completely eliminate the effect of B. The latter situation, illustrated below, might be characterized as
intermediate, partial, or relative synergism. B can now affect disease risk even in the absence of A.

{U1}

A has thus become a relative modifier of the effect of B. B, however, remains an absolute modifier
of the effect of A, because A has no effect in the absence of B. We may also note that component
cause B is a necessary cause, since there is no sufficient cause (causal pathway) that can operate
unless B is present.
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In this diagram, G and H exhibit absolute synergy, since neither has an effect in the absence of the
other. B and C exhibit partial synergy with respect to each other, since their combined effect
exceeds what would be expected from knowledge of their separate effects.

Applying Rothman's model to epidemiologic concepts (induction period)
and measures

In our discussion of natural history of disease, we defined the induction period as the time between
initial exposure and the development of the disease. Since causal pathways involve multiple
component causes, though, in Rothman's model the concept of induction period applies to
component causes, rather than to the disease. The induction period in respect to a particular
component cause is the time usually required for the remaining component causes to come into
existence. If necessary, one component cause can be defined as a period of time (e.g., for a
microbial pathogen to multiply). By definition, the induction period for the last component cause to
act has length zero.

Another and even more fundamental issue is that in multicausal situations, disease occurrence,
extent, association, and impact all depend upon the prevalence of the relevant component causes in
the populations under study. While we have previously acknowledged that the incidence and/or
prevalence of a disease or other phenomenon depends upon the characteristics of the population,
we have not examined the implications of this aspect for other epidemiologic measures. For
example, we have generally spoken of strength of association as though it were a characteristic of an
exposure-disease relationship. But though often treated as such, strength of association is
fundamentally affected by the prevalence of other required component causes, which almost always

exist.

Rothman's model helps to illustrate these relationships in situations where biological
interdependency (used as a general term to signify any causal interdependency) is present. A basic
point is that disease incidence in persons truly unexposed to a study factor indicates the existence of
at least one sufficient cause (causal pathway) that does not involve the study factor. If exposed
persons have a higher prevalence of the component causes that constitute this sufficient cause, their
disease rate will be higher. This process is the basis for confounding to occur.

Second, since very few exposures are powerful enough to cause disease completely on their own, the
rate of disease in exposed persons will also depend upon the prevalence of the other component
causes that share pathways (sufficient causes) with the exposure. Measures of association and
impact will therefore also depend upon the prevalence of other component causes, since these
measures are derived from incidence rates.

Third, if two causal components share a causal pathway, then the rarer of the two component causes
will appear to be a stronger determinant of the outcome, especially if the remaining component
causes are common. As in economics, the limiting factor in production experiences the strongest
upward pressure on price.

www.epidemiolog.net, © Victor J. Schoenbach 12. Multicausality: Effect modification - 390
rev. 11/5/2000, 11/9/2000, 5/11/2001



Fourth, proportion of disease attributable to a component cause (i.e., its ARP) depends upon the
prevalence of the other component causes that share the causal pathway(s) to which it contributes.
This result is so because if the strength of association depends upon prevalences, then so must the
ARP. However, the ARP's for the various component causes are not additive and will often sum to
more than 1.0. For example, if two component causes are in the same causal pathway, then the
entire risk or rate associated with that pathway can be attributed to each of the two components.
The absence of either component prevents the occurrence of the outcome.

Phenylketonuria example

An example of these relationships, from the article referred to earlier (Causes, Am J Epidemiol 1976;
104:587-92), is the causation of phenylketonuria (PKU), a condition that, like favism, is linked to a
dietary factor (phenylalanine, an amino acid) and a genetic defect. Infants with the PKU gene who
ingest more than a minimal amount of phenylalanine develop serious neurologic effects including
mental retardation. The "causal pie" for this example would be the same as the first one in this
chapter, with A representing the PKU gene and B representing dietary phenylalanine.

Since Western diets typically contain phenylalanine, in the absence of specific preventive measures
(universal screening of newborns and institution of a special diet) nearly all infants with the PKU
gene develop clinical manifestations. The risk ratio for the PKU gene is therefore enormous; the
PKU gene is a "strong" cause. In contrast, phenylalanine is a "weak" cause, since neatly all infants
are exposed to it and only a tiny proportion develop clinical PKU. However, in a society in which a
large proportion of the population have the PKU gene and infant diets rarely contain phenylalanine,
then dietary phenylalanine will appear as the strong cause and the PKU gene as the weak cause!
(Recall: "any measure in epidemiology is a weighted average . . .".).

Numerical example - favism

To explore these ideas further, let us construct a numerical example. Suppose that in a population
of size 10,000,000, there are two sufficient causes of favism, one that involves both GPDH
deficiency and fava bean intake, and a second that involves neither of these factors. Assume:

* 1% of the population (100,000 persons) have GPDH deficiency;
*  20% (2,000,000) of the population consume fava beans;

* These two factors are distributed independently of one another, so that 20,000 people have
both factors (20,000 = 1% of the 2,000,000 fava bean = 20% of the 100,000 GPDH deficient
persons).

* All remaining component causes {U} needed to lead to favism through the first sufficient
cause are simultaneously present in 10% of persons, independent of their other risk factors;

* The sufficient cause that does not involve fava beans or GPDH deficiency occurs in 0.03%
of the population, again independent of other factors/component causes. (We are assuming that
the definition of favism does not require involvement of fava beans themselves.)
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In this situation, the first sufficient cause will act in the expected 1% x 20% x 10% = 0.02% of the
population in whom all these components are present, i.e., 2,000 cases. The second sufficient cause
will operate in 3,000 persons, regardless of GPDH deficiency and/or fava beans. The table below
shows what we can expect to observe in various subsets of the population.

Incidence of favism by population subgroup

Sub-population N Incidence Cases

People who do not eat fava beans and do not 7,920,000 0.03% 2,376
have GPDH deficiency;

[N = 80% x 99% x 10,000,000
cases come only from the 2nd pathway]

People who eat fava beans but do not have 1,980,000 0.03% 594
GPDH deficiency

[N = 20% x 99% x 10,000,000
cases come only from the 2nd pathway]

People with GPDH deficiency who do not eat 80,000 0.03% 24
fava beans [N = 1% x 80% x 10,000,000;
cases come only from the 2nd pathway]

People with GPDH deficiency who eat fava 20,000 10.03% 2,005.4
beans N= 1% x 20% x 10,000,000

10% (2,000 cases) occur in the 10% with the

remaining component causes; also, 0.03% of

the 20,000 (6 cases) get favism through the

second pathway; (0.6 people would be

expected to have both pathways acting so are

subtracted from the above total)]

Total 10,000,000 0.05% 4,999.6

From this table we can compute (crude) incidences and incidence ratios for each exposure:
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Incidence and incidence ratios of favism (crude)

GPDH deficiency
Present 2.03%
(2,030 cases / 100,000 people)

Absent 0.03%
(2,970 / 9,900,000 people)

Incidence ratio 67.67

Eat fava beans
Yes 0.13%
(2,600 cases / 2,000,000)

No 0.03%
(2,400 / 8,000,000)

Incidence ratio 4.33

So indeed, the scarcer factor (GPDH deficiency) has the greater incidence ratio. If we increase the
prevalence of GPDH deficiency without changing other parameters, the incidence ratio for fava
bean consumption will rise. A spreadsheet is a convenient way to see the effect on incidence ratios
from varying the prevalences (check the web page for a downloadable Excel spreadsheet).

Bottom line — what we observe as strength of association is greatly dependent upon prevalence of
other component causes.

The above example also illustrates the non-additivity of the attributable risk proportion
[ARP=(RR-1)/RR]):

67.67 — 1
ARP for GPDH deficiency = 98.5 %
67.67
433 — 1
ARP for Fava bean consumption = 76.9 %
4.33

Cleatly, these ARP's do not sum to 100%, nor, when we think about it, should they.

Before continuing with Rothman's diagrams, we need to revisit an old friend, weighted averages.
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Crude rates as weighted averages

Recall the example of Type A behavior and CHD incidence with which we began the chapter on
Confounding. In that example, smokers had a much higher incidence of CHD than did
nonsmokers. Since the Type A group consisted mainly of smokers, its CHD incidence was greater
than the Type B group, which consisted mainly of nonsmokers. If there were three smoking status
groups, then the Type A incidence would be a weighted average of the rates for each of the three
smoking status groups (see diagram).

Incidence
of Observed (crude)
CHD rate in Type A

subjects

Non- Light smokers Heavy
smokers smokers

So whenever we compare groups, it is important to pay attention to their distributions of risk
factors. In the chapter on confounding, though, we considered only subgroups defined by other
(independent) risk factors. We will now see that we must widen our view to include subgroups
defined by variables that may influence the effect of the exposure even if those variables have no
effect in its absence.

Since every rate we observe in some population is a weighted average of the rates for its component
subgroups, this principle must apply to a group of exposed persons as well. Thus, the incidence in
the exposed group depends on the composition of the group in regard to factors that are in the
same causal pathways as the exposure. A prominent example is genetic factors, which thanks to the
molecular biological revolution we are learning a great deal more about.

For example, it has been asserted that susceptibility to impairment of red blood cell production by
low-level lead exposure varies according to the genetically-controlled level of the enzyme amino
levulanate dehydratase. If that is the case, then in a group of children with a given level of blood
lead (e.g., 20 micrograms/dL), the proportion with evidence of impaired red blood cell production
would reflect a weighted average of the proportions in each subgroup defined by enzyme level:
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%

with evidence

of impaired
red blood cell Observed (crude)
production at % of subjects
20 pg/dL affected
blood lead

Low Intermediate High

Level of Amino Levulanate Dehydratase

Another example is that LDL cholesterol levels reflect both dietary intake of saturated fat and
cholesterol and ApoE genotype (from Shpilberg et al., 1997). Compared to persons with the most
common allele (E3), those with the E2 allele have lower average cholesterol and those with the E4
allele have higher levels. Therefore, serum cholesterol levels associated with a given population
distribution of dietary fat intake will depend on the distribution of these three genotypes.

Yet another example is incidence of venous thromboembolism. A strong effect of oral
contraceptives (OC) on venous thromboembolism was one of the first hazards to be recognized for
OC. Recent data from Vandenbroucke et al. (Factor V Leiden: should we screen oral contraceptive
users and pregnant women? Bio Med J 1996;313:1127-1130) show an overall incidence of 0.8 per
10,000 women-years that rises to 3.0 per 10,000 women years with OC use. But among OC users
who are also carriers of factor V mutation (associated with activated protein C (APC) resistance), the
incidence rises to 28.5 per 10,000 women years (from Shpilberg et al., 1997). So the incidence of
venous thromboembolism in a population and the effects of OC will be greatly influenced by the
population prevalence of factor V mutation.

So whatever phenomenon we are investigating, we need to take account of both independent risk
factors for it and factors that may only appear to modify the effect of an exposure of interest (which
we will subsequently refer to as an "effect modifier"). This is one reason why we typically stratify
data by sociodemographic factors. Factors that affect susceptibility may well covary with
demographic characteristics such as age, sex, geographic region, and socioeconomic resources, even
if they do not have a role of their own in causation.

Since the distribution of effect modifiers may affect disease rates, it will also affect comparisons
between rates in exposed and nonexposed subjects. But if the effect modifier is not itself a risk
factor for the disease — i.e., if in the absence of the exposure of interest the effect modifiers is not
associated with disease risk — then the modifier can confound associations only among groups with
different levels of exposure, not between an exposed and an unexposed group.

Several examples will help to clarify these points. Assume for the moment, that asbestos has no
effect on lung cancer incidence independent of smoking, but that smoking has an effect both alone
and synergistically with asbestos. A study of the two factors might produce the following data:
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Lung cancer rates by smoking and asbestos exposure
(per 100,000 person years)

Smokers
Exposed to asbestos 602
Not exposed to asbestos 123
Nonsmokers
Exposed to asbestos 11
Not exposed to asbestos 11

From these data we would conclude (leaving aside all issues of statistical significance, bias, and so
on) that (a) smoking increases lung cancer risk and (b) asbestos does so only in smokers. Smoking
emerges as a risk factor, and asbestos as a modifier of the effect of smoking. Smoking could also be
said to be an absolute modifier of the effect of asbestos, since the effect of the latter is null without
smoking and dramatic in its presence. The rate ratios for lung cancer in smokers versus nonsmokers
are 55 among those exposed to asbestos and 11 among those not exposed.

If we had not analyzed our data separately according to asbestos exposure, the lung cancer rate in
nonsmokers would still be 11 per 100,000 person-years. But the rate in smokers would be
somewhere between 123 and 602. The actual value would depend on the proportion of smokers
exposed to asbestos. Similarly, the rate ratio for lung cancer and smoking would range between 11
and 55. So the crude rate ratio for lung cancer and smoking would always lie within the range of the
stratum specific rate ratios.

The fact that the crude rate ratio differs from the stratum-specific rate ratios does not mean that
confounding is present. Regardless of the proportion of subjects exposed to asbestos, the
relationship between smoking and lung cancer cannot be due to asbestos exposure, though the
strength of that relationship will depend on the degree of asbestos exposure. If the crude rate ratio
can be expressed as a weighted average of the stratum-specific ratios, then confounding is not
present.

The above results will always hold when the effect modifier has no effect in the absence of the
exposure and the comparison of interest is between exposed and unexposed groups. A point of
theoretical interest is that it was the above type of situation that led us in our discussion of
confounding to focus on the question of an association between the potential confounder variable
and the disease among the unexposed. An association among the exposed could reflect effect
modification rather than independent causation (i.e., among exposed persons, disease rates are
higher among those also exposed to a modifier, even if that is not the case among unexposed
persons).

Since an effect modifier with no independent effect on the outcome does alter the risk or rate in the
presence of exposure, however, an effect modifier can confound comparisons between groups
exposed to different degrees. Suppose, for example, that we have divided the smokers in the
previous table into light smokers and heavy smokers. Suppose further that most light smokers are
exposed to asbestos and most heavy smokers are not. Then we might well observe a higher lung
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cancer rate among the light smokers (due to their greater asbestos exposure) than among the heavy
smokers (where the rate has not been increased by asbestos). The following table gives a numerical
illustration of such a situation.

Lung cancer rates by level of smoking and asbestos exposure
(per 100,000 person years)

Heavy smokers - overall (200-1,000)
Exposed to asbestos 1,000
Not exposed to asbestos 200

Light smokers - overall (100-500)
Exposed to asbestos 500
Not exposed to asbestos 100

Nonsmokers - overall (11)
Exposed to asbestos 11
Not exposed to asbestos 11

Here, asbestos alone has no effect, heavy smoking in the absence of asbestos has rates twice that for
light smoking, and asbestos increases lung cancer rates in smokers fivefold. If 60% of light smokers
but only 10% of heavy smokers are exposed to asbestos, then the overall lung cancer rate in light
smokers (340 = {500 x .60 + 100 x .40}) will exceed that in heavy smokers (280 = {1,000 x .10 +
200 x .90}).]

While the above situations may at first appear to be complex, they simply reflect different aspects of
weighted averages, so with some practice the mystery evaporates. Additional complexity does enter
the picture, however, when we turn to effect modification by a variable that has an effect on the
outcome by a pathway that does not involve the exposure of interest, i.e., an independent effect.
Compare these two causal schema:

Smk

{B1}
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Smk Smk | Asb. Asb.

{B1} {B2} {B3}

where {Bo}, {B1}, {B2}, and {B3} ate probably overlapping sets of (unidentified) background
factors that are needed because (1) people exposed to neither cigarette smoke nor asbestos do get
lung cancer, albeit at a low rate; (2) not all people who smoke get lung cancer; etc. [Note: these are
the same as Rothman's {U}. I prefer to use different subscripts to make clear that different causal
pathways generally involve different required background factors. Otherwise all persons susceptible
to developing the disease through a causal pathway involving an exposure (e.g., smoking) would get
the disease regardless through the "unexposed" pathway even if not exposed, so the exposure could
not be associated with an increased rate of disease.]

The three-pathway configuration represents the situation we have just seen, where asbestos has no
effect in nonsmokers. If we apply the data from the preceding numerical example into the upper
configuration of causal pathways, we see that the rate that corresponds to the first causal pathway

({Bo}) is 11/100,000 py. The rate that corresponds to the second causal pathway (Smk|{B1}) is
112/100,000 py (123 - 11: the incidence density difference, since people who smoke and can
therefore get disease through the second causal pathway are also at risk of developing the disease
through the first causal pathway). Similarly, the rate that corresponds to the third causal pathway

(Smk | Asb | {B2}) is (602-112-11)/100,000 py (since we obsetve 602 for people who have both
exposures, but they could have developed disease from either of the first two causal pathways).

These different disease rates presumably correspond to the prevalences of {B1}, B2}, and {B3}.

The four-pathway configuration does show an independent effect of asbestos. In this configuration,
we see that confounding by asbestos can occur, since the risk in nonsmokers may be elevated by the
effect of asbestos. Moreover, it now becomes more difficult to assess effect modification as "a
combined effect greater than we expect from the effects of each variable acting alone". The
problem is: if each variable has an effect on its own, what do we expect for their combined effect so

we can say whether we have observed something different from that?

Consider, for example, actual data on the relationship of smoking and asbestos to lung cancer death
rates (from E. Cuyler Hammond, Irving J. Selikoff, and Herbert Seidman. Asbestos exposure,
cigarette smoking and death rates. Annals NY Acad Sci 1979; 330:473-90).
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Age standardized lung cancer rates by smoking and asbestos exposure
(per 100,000 person years)

Smokets Nonsmokers
Exposed to asbestos 602 58
Not exposed to asbestos 123 11

When we calculate the disease rates that correspond to each of the four causal pathways in the lower
configuration of causal "pies" above, the two leftmost pathways have the same rates as in the upper
configuration. 'The rate corresponding to the rightmost pathway (Asbestos|{B3}) is 58-11 =
47/100,000 py. The rate that corresponds to the third causal pathway (Smk|Asb|{B2}) is now
reduced since some of cases with both exposures could be due to the effect of asbestos. So the rate
that corresponds to the third pathway is now (602-112-11-47)/100,000 py = 410/100,000 py.

We might take these rates and reason as follows:

Increase due to smoking 123-11 =112
Increase due to asbestos 58 -11 = 47

Total increase expected due to both 112 + 47 =159
Total observed increase 602 -11 =591

Since the increase due to the combined effect greatly exceeds that expected from our (additive)
model, we would conclude that the effect is synergistic.

Alternatively, we might reason in relative terms:

Relative increase due to smoking 123 /11 =112
Relative increase due to asbestos 58/11 =53
Total increase expected due to both 11.2 x 5.3=594
Total observed increase 602 / 11 =54.7

This time the observed increase and that expected from our (multiplicative) model are quite close, so
we conclude that there is no effect modification. We are thus faced with a situation where the
decision about effect modification depends upon what model we employ to arrive at an expected
joint effect to compare with the observed joint effect (or equivalently, upon the scale of
measurement, hence the term "effect measure modification").

Before pondering this dilemma further, we should first state the additive and multiplicative models
explicitly. To do so we introduce a notation in which "1" indicates presence of a factor, a "0"
indicates absence of a factor, the first subscript represents the first risk factor, and the second
subscript represents the second risk factor (see below).
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Notation for joint effects

R; tisk or rate in the presence of a factor, ignoring the presence or absence of other
identified factors
Ry risk or rate in the absence of a factor, ignoring the presence or absence of other
identified factors
Ry tisk or rate when both of two factors are present

Ry fisk or rate when the first factor is present but not the second
Ro; fisk or rate when only the second factor is present

Rgp tisk or rate when neither of the two factors is present (i.e., risk due to background

factors)

RD;y; difference between the risk or rate when both factors are present and the risk or
rate when neither factor is present

RD;o difference between the risk or rate when only the first factor is present and the risk
or rate when neither factor is present

RD(; difference between the risk or rate when only the second factor is present and the
risk or rate when neither factor is present

RRy; ratio of the risk or rate when both factors are present divided by the risk or rate
when neither factor is present

RRyo ratio of the risk or rate when only the first factor is present divided by the risk or
rate when neither factor is present

RRg; ratio of the risk or rate when only the second factor is present divided by the risk
or ratio when neither factor is present

The use of two subscripts implies a stratified analysis. The first subscript indicates presence or
absence of the first factor; the second subscript, presence or absence of the second factor. For

example, Rq( refers to the rate for persons exposed to the first factor but not to the second. That
rate can be referred to as the rate for the exposed (to factor 1) in the stratum without factor 2;

equivalently, R1g can be referred to as the rate for the unexposed (to factor 2) in the stratum where

factor 1 is present. In contrast, a single subscript (R1) means the factor is present, with other factors
present or not present (i.e., crude with respect to other factors). "Background" factors and the risk

Roo associated with them are assumed to be uniformly distributed across all strata.

Additive model

Under an additive model, the increase in rate or risk from a combination of factors equals
the sum of the increases from each factor by itself. We can express this statement algebraically,
using the rate (or risk) difference:
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Rii—Roo = Rio—Roo T  Roi— Roo (AT)

RDy1 = RD1o + RDoq (A2)

Using elementary algebra and the definition of the rate difference, we can also write the additive
model as:

Ri1 = Rew T RDiw T RDp (A3)

i.e., the expected rate where both factors are present is the baseline rate (Roo, neither factor present)
plus the rate difference associated with the first factor plus the rate difference associated with the
second factor. Another equivalent expression is:

Rii = Riw T Ron - Roo (A4)

Since RR11 = R11/Roo, RR190 = R10/Ro0, and RRg1=Ro1/Roo, we can express the additive model in

terms of the risk (or rate) ratio, by dividing each term in expression Al by the baseline risk, Roo.
RRij—1 = RRpp-1 + RRe-1 (A5)

An advantage of this formulation is that we can use it even when we do not have estimates of

specific risks or risk differences. The expression (R1-Rg)/Ro, of RR — 1, is sometimes referred to as
the (relative) excess risk. The additive model, expressed in terms of excess risk, is therefore:

Excess risk for A and B together = Excess risk for A+ Excess risk for B

L.e., the joint excess risk equals the sum of the excess risk for each factor alone. With this expression
we can evaluate the additive model even from case-control data.

More than two factors

Where there are three factors, we have, analogously:

RR111—1 = RRioo—-1 + RRopio—-1 + RRpgp -1 (A6)
RDi11 = RDip + RDoio + RDon (A7)
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Ri11 Rooo  + RDi1oo + RDoio + RDoto (A8)

and

Ri11 = Rico + Rowo +  Root — 2 Rooo (A9)

So the additive model can be regarded as based on 1) additivity of excess risks, 2) additivity of risk
differences, and/or 3) additivity of the risks themselves. The reason that we need to subtract the
baseline risk in the last of these forms is that risk in the presence of any of the factors includes,
necessarily, the ever-present background risk. So when we add the risk for one factor to the risk for

another factor, the background risk is added twice. Thus, when we refer to Rjj as the risk (or rate)
for a factor "by itself", the "'by itself" really means ""with no other specified factors", since the
baseline risk is, by definition, always present.

Multiplicative model

In parallel fashion, the multiplicative model assumes that the relative risk (risk ratio, rate ratio) for
the factors operating together equals the product of their relative risks:

RRi1 = RRip * RRpp (M1)
Multiplying through by baseline risk (Roo) gives:
Rt = Roo * RRio * RRp M2)
and
Rit = Rig X Ro / Roo (M3)

Le., the joint risk equals the product of 1) the baseline risk multiplied by the relative risk for each
factor and/or 2) the individual risks and the reciprocal of the baseline risk. For three factors, the
model becomes:

RRi11 = RRioo X RRoio X RRoo (M4)
and
Ri11 = Rooo X RRiogo X RRoio X RRoos (M5)
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and
Rin = Riwo X Rowo X Root  / (Rooo)? (Mo)

Again, there is a baseline risk or rate in the denominator of each relative risk, so when the relative

risks are converted to risks, the Roop in the numerator eliminates one of the resulting three Rooo's,
leaving two remaining in the denominator. As before, "by itself' means without other specified
factors, but including baseline risk.

Note, however, that the multiplicative model can also be written as an additive model on the
logarithmic scale (because addition of logarithms is equivalent to multiplication of their arguments):

InR11)) =  InRie) T In@oe) T InRoot) — 2XInReog) M)

For this reason, the difference between the additive and multiplicative models can be characterized
as a transformation of scale. So "effect modification" is scale-dependent.

Optional aside — It can also be shown that a multiplicative model can be expressed as an
additive model on the natural scale plus an interaction term. For two factors: (Rip —
Roo)(Ro1 — Roo)/Roo, ot equivalently, (Roo)(RR10—1)(RRo1—1) — essentially, we add a "fudge
factor".
Additive model:

R11 = Rio + Ro1 — Roo
Additive model with interaction term:

R11 = R0 + Rot — Roo + Roo X (RR10—-1) X (RRo1—1)

Multiplying out the interaction term:

R11 = R1o + Ro1 — Roo + Roo X RR109 X RRo1 — Rpo X RR19 —Roo X RRo1 + Roo

Dividing both sides by Roo:

RR11 = RR19p + RRg1 — 1 + RR10 X RRgp1 — RRg1 — RR1g + 1

Simplitying:
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RRi1 = RRyo X RRy = the multiplicative model

[End of aside]

The choice of model — additive, multiplicative, or other — is not a settled affair and involves a variety
of considerations. One consideration is to choose the simplest model that can represent the data.
Recall the example from an earlier lecture:

Relative versus Absolute Effects example Incidence of myocardial infarction (MI)
in oral contraceptive (OC) users per 100,000 women-years

Age Cigarettes/day OC* OC* RR** AR®HRE
30-39 0-14 6 2 3 4
15+ 30 11 3 19
40-44 0-14 47 12 4 35
15+ 246 61 4 185
Notes:
* Rate per 100,000 women-years
*oK RR=relative risk (rate ratio)

##x AR=attributable risk (rate difference)
Source: Mann et al. (presented in a seminar by Bruce Stadel)

Here, we saw that the rate ratio was a more stable index of the strength of association between OC
and MI across the various combinations of age and smoking. In fact, the MI rates for many
combinations of the three risk factors — age, smoking, and OC — are not far from those expected
based on the multiplicative model. To see this, use the additive and multiplicative models just
presented with the data in the above table to fill in the rightmost two columns of the following table.

If we write the rates for the three risk factors as Rioo, Ro1o, and Rop1, with the background rate

defined as Ropo, then joint rates for several combinations of risk factors would be:

First and third factors present (row 0):
R101 = Rioo + Roor — Rooo (additive model)

Rio1

R100 X Root / Rooo (multiplicative model)

First and second factors present (row 7):

R110 = Ri1oo + Ro1o — Rooo (additive model)
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R110 = R1o0 X Ro1o/ Rooo (multiplicative model)
All three factors present (row 8):

Ri11 = Rioo + Roto + Roor — 2Ropoo  (additive model)

Ri11 = Rioo X Roto X Roo1 / (Rooo)?  (multiplicative model)

where the three factors are 1) age, 2) cigarette smoking, and 3) oral contraceptives. For example,

suppose Rip1 is the rate of MI in women who are in the older age group, smoke less than 15
cigarettes/day or not at all, and use oral contraceptives. The multiplicative model says that the rate
for any combination of the three factors (with cutpoints defined as in the table) equals the product
of the rates for each of the three factors when neither of the other two is present, divided by the
square of the rate for those who have none of the three factors (i.e., only unidentified background
factors are present). Here is a "test" of the model (one line is left incomplete, to give you the
satisfaction of figuring it out):

Home-made multiplicative model of Incidence of myocardial infarction (MI) in oral
contraceptive (OC) users per 100,000 women-years

Observed  Expected  Expected

Row Age Cigarettes oC* Rate (Multiplic)  (Additive)
/day
1 Rooo 0:30-39  0:0-14 0: no 2 - -
2 Roo1 0:30-39  0:0-14 1: yes 6 - -
3 Ro10 0:30-39 1:15+ 0: no 11 - -
4 Ri00 1:40-44  0:0-14 0: no 12 - -
5 Ro11 0: 30-39 1: 15+ 1: yes 30 - -
6 Rio1 1: 40-44  0:0-14 1: yes 47 36 16
7 Ri10 1:40-44  1:15+ 0: no 61 66 21
8 Rit1 1:40-44  1:15+ 1: yes 246 198 25

Notes: 0:and 1: indicate the coding for each risk factor level. Rates for single factors in the absence
of the other two are shown in bold.

[Thanks to Jim McDougal (1996) for spotting my longstanding errors in the 3-factor interaction in
this table and its explanation.]

Certainly the multiplicative model yields expected rates that are closer to the observed rates for
various combinations of the factors than does the additive model. The better fit for the
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multiplicative model supports the use of the rate ratio as the measure of association for each risk
factor and each risk factor combination in these data. If Mann et al. want a summary measure for
the effect of OC on MI rates, controlling for age and smoking, a weighted average of the rate ratios
(3, 3, 4, 4) for OC use across the four age and smoking categories would be a good choice. But then
what happened to effect modification?

The "natural" scaling

The additive model has been put forth by Rothman as the "natural" scaling. Risks ate probabilities,
and the probability that either of two independent and mutually exclusive events will take place (e.g.,
smoking causes MI or OC causes MI) is the sum of the probabilities for each. Therefore if the risk
(probability of disease) in people with both exposures exceeds the sum of the risks for each
exposure separately, then some non-independence (i.e., interaction) must exist between these two
disease events. Rothman's proposition appears to have become the consensus in terms of evaluating
impact on public health and/or individual risk (see below). Our eatlier suggestion that the risk or
rate difference serves more often as a measure of impact than as a measure of strength of
association in respect to etiology is distinctly parallel.

When our interest is the relationship of the mathematical model or scaling to possible biological
mechanisms, however, the issue becomes more problematic. Kupper and Hogan (Interaction in
epidemiologic studies. Am J Epidemiol 108:447-453, 1978) demonstrated how two factors having
biologically equivalent modes of action, so that either factor can be regarded as a different
concentration of the other, can appear to be synergistic in their joint effect if the dose-response
curve is nonlinear. (This example harks back to the fact that additivity on the logarithmic scale is
equivalent to multiplicativity on the natural scale.) Therefore, a departure from additivity can occur
even in the absence of biological interaction.

Data from a study published in that year provides an illustration. Bradley DD, et al. (Serum high-
density-lipoprotein cholesterol in women using oral contraceptives, estrogens and progestins. New
Engl J Med 299:17-20, 1978) suggested that smoking and oral contraceptives (OC) may each increase
myocardial infarction risk by reducing levels of HDL cholesterol. The effects of smoking and oral
contraceptives on HDL appear to be additive. But if the relationship between HDL level and
myocardial infarction risk is exponential, with the logarithm of risk increasing in linear fashion with
declining HDL, then the effects of the two behavioral risk factors on myocardial infarction risk will
be multiplicative.

In the figure below, the natural logarithm of heart attack risk is a linear function of HDL level, so
that risk rises exponentially as HDL decreases. The risk function comes from Bradley et al.'s paper.
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Risk In(risk)
0.19 -1.67
0.13 -2.01 In(risk) = 4.25 - (0.174) HDL
0.09 -2.36
0.07 2,71
0.05 -3.06
0.00 _
34 36 38 40 42
HDL
(mg/dD)

If smoking causes a reduction in HDL of 6 mg/dL, and oral contraceptives cause a reduction of 2
mg/dL, then the changes in In(risk) [from the formula in the figure] and in the RR's for smoking and
oral contraceptives separately and for both together are shown in the following table:

Factors HDL Increase in RR
reduction In(risk)

Smoking 6 1.044 2.84

OC only 2 0.348 1.42

Smoking and OC 8 1.392 4.02

Smoking is associated with a 6 mg/dL lower HDL level, corresponding to an increase in In(risk) of
1.044, which in turn corresponds to a relative risk of 2.84. Although (in this conceptual model) the
biological effects of smoking and OC on HDL are additive, because the dose-response curve is not
linear, this additivity of dose does not imply additivity of response.

This point has been elaborated by Thompson (1991), who makes the point that pathogenetic
processes are likely to include factors that intervene between the variables in our simplified causal
models. Such intervening factors are generally unknown or unmeasured by epidemiologists. Yet as
illustrated above, the form of the functional relation between two variables can change the
appearance of a risk function. The actions of two factors may be additive on their immediate target,
but their effect on risk of a downstream effect could be additive, multiplicative, or anything else.
Only in the case of a crossover effect (a.k.a. qualitative interaction, which to be certain that it exists
should be demonstrated by confidence intervals that lie wholly below the null value in one stratum
and wholly above the null value in the other stratum — see Thompson 1991) do we have a basis for
inferring that something of biological interest is occurring (after excluding other non-mathematical
explanations). Another situation where interpretation is unambiguous — what I have called "absolute
effect modification", where one factor has no effect in the absence of the other — is in practice just
as problematic as other non-crossover situations, since it is rarely possible to exclude the presence of
at least a weak effect (Thompson 1991).
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Effect modification as a reflection of information bias:

Another consideration that arises in interpreting apparent effect modification in epidemiologic data
relates to the question of the actual dosage received by subjects. Suppose that data from a study of
lung cancer and smoking yielded these results:

Lung cancer rates per 100,000 person-years

Males Females
Smokers 300 500
Nonsmokers 50 50

The rate ratios for males and females are 6 (300/50) and 10 (500/50), respectively, which might
suggest that women are more susceptible to the carcinogenic properties of tobacco smoke. But
what if women smokers inhale more deeply and therefore receive a larger dose of carcinogenic
substances, the actual exposure? So whereas effect measure modification in epidemiologic data may
suggest the need for a more detailed understanding of the phenomenon under study, an
interpretation in terms of biological synergism involves causal inference and needs to be approached
from that perspective.

Consensus

Rothman, Greenland, and Walker (1980) presented four perspectives on the concept of interaction:

1. The biologic perspective is concerned with elucidating how various factors act at the
biological (mechanistic) level.

2. 'The statistical perspective treats interaction as "leftovers", i.e., the nonrandom variability in
data that is not accounted for by the model under consideration. Statisticians often try to
reformulate the model to eliminate these leftovers, i.e., to find the simplest model that fits
the data adequately.

3. The public health perspective should regard interaction is a departure from additivity, if one
assumes that costs are proportional to the number of cases. If effects are more than
additive, then a greater than proportional payoff can be obtained by intervening against a
factor involved in an interaction.

4. 'The individual decision-making perspective should also regard interaction as a departure
from additivity, again assuming a linear relationship between costs and, in this case, risk. For
example, if the combined effect of smoking and hypertension on CHD risk is greater than
additive, someone with hypertension can reduce his risk even more by quitting smoking than
someone with normal blood pressure.

These perspectives appear to be widely accepted. The term "effect modification" is generally used
to refer to a meaningful departure from a given mathematical model (i.e., additive, multiplicative, or
whatever) of how risks or rates combine. ("Meaningful" means that the departure is large enough to
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have clinical or public health significance and thought not to be due to random variability,
measurement inadequacy, or confounding.)) The additive model appears to be accepted as the
indicator of "expected joint effects" for policy or decision-making considerations.

Summary

In view of the foregoing, we may attempt to summarize the relevance of interaction and effect
modification in terms of four implications:

1. Increasing the precision of description and prediction of phenomena under study;
2. Indicating the need to control for the factors that appear as modifiers;
3. Suggesting areas for developing etiologic hypotheses; and

4. Detining subgroups and factor combinations for special attention for preventive approaches.

Elaboration
1. Increasing precision of description:

In our smoking in men and women illustration, the different strength of the smoking-lung cancer
association between men and women may lead to an appreciation of the need to be more precise in
the measurement and specification of the exposure variable.

2. Indicating the need to control for modifiers:

Since an effect modifier changes the strength of the association under study, different study
populations may yield different results concerning the association of interest. Unlike potential
confounders, modifying variables cannot create the appearance of an association (for exposed versus
unexposed) where none exists. But the proportion of the study population that has a greater
susceptibility will influence the strength of the association. Therefore, to achieve comparability
across studies, it is necessary to control for the effect of the modifying variables, generally by
carrying out a separate analysis at each level of the modifier.

3. Developing etiologic hypotheses:

Attention to interactions in the data may lead to the formulation of etiologic hypotheses that
advance our understanding of the pathogenetic processes involved. Although the linkage between
mechanisms and relationships in data is uncertain, a strong interaction might suggest that a shared
mechanism is involved. For example, the interaction of smoking and asbestos might suggest a
scenario such as impairment of lung cleating processes and/or of mechanical injury from asbestos
particles increases susceptibility to carcinogens in cigarette smoke.
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4. Defining subgroups for preventive approaches:

To obsetve that the OC-MI association is patticulatly strong among smokers and/or women over
35 carries evident preventive implications in terms of health education warnings, contraindications
to prescribing, targeting of messages, and so forth. The synergistic relationship between smoking
and asbestos in the etiology of lung cancer suggests the value of extra efforts to convince asbestos
workers not to smoke. If the cost of helping a smoker to quit smoking is the same for asbestos
workers and others, then the benefit-cost ratio will be greater for a cessation program with smokers
who work with asbestos because more cases of lung cancer will be avoided for the same number of
quitters.

The rationale for viewing effect modification as a departure from an additive model of disease risks,
at least for public health purposes, is that if an additive model holds, then removal of one agent can
only be expected to eliminate the risk that arises from that agent but not the risk from other agents.
If there is positive interaction, however, removal of any one of the agents involved will reduce some
risk resulting from the other as well. In such a situation, the impact of removing a risk factor is
greater than that expected on the basis of its effect on baseline risk.

A "real-life" example

The following table comes from a randomized, controlled trial of a self-help smoking cessation
intervention using brief telephone counseling. Quit rates for smokers in the intervention group and
the other groups suggested that participants with certain baseline characteristics were more or less
likely to benefit from the telephone counseling intervention. For example, the telephone counseling
intervention was associated with a 14 percentage point (31%—17%) higher quit rate for participants
who were not nicotine dependent but with only a 3 percentage point (17%—14%) higher quit rate for
participants who were nicotine dependent. The intervention was associated with a 12 percentage
point (29%-17%) higher quit rate for participants who had not previously undergone an intensive
cessation program but with only a 2 percentage point (17%—15%) higher quit rate for participants
who had. The observed differences appeared to be consistent with the fact that the intervention was
a minimal treatment (so would not be of much help to a smoker who had already experienced an
intensive treatment program) that incorporated nicotine-fading/brand-switching (which has limited
applicability for a smoker who is already smoking a low-nicotine brand).
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Baseline Characteristics Associated with a Significantly Different Telephone Counseling
Effect on 7-day Abstinence at 16-months Follow-up in 1,877 Smokers at Group Health
Cooperative of Puget Sound, Washington, 1985-1987

Quit rate
with characteristic without characteristic

No No
Baseline characteristic Counseling Counseling Counseling Counseling
Nicotine dependent 17 14 31 17
Intensive treatment 17 15 29 17
Brand nicotine > 0.7 mg 24 12 22 20
VIP better role model 28 15 19 16
Close friends/relatives 21 17 29 14
Nonsmoking partner 19 19 25 14

Note: For each characteristic, the difference in quit rates between counseling and no-counseling
groups among those with the characteristic is significantly (p<0.05) greater or less (by about 10
percentage points) than the quit rate difference among those without the characteristic. Bolding
denotes the greater telephone counseling effect.

Reference: Schoenbach V], Otleans CG, Wagner EH, Quade D, Salmon MAP, Porter CQ.
Characteristics of smokers who enroll and quit in self-help programs. Health Education Research
1992;7:369-380, Table 3.
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